matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationFehlerabschätzung Maximum Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Interpolation und Approximation" - Fehlerabschätzung Maximum Norm
Fehlerabschätzung Maximum Norm < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerabschätzung Maximum Norm: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:27 Mi 30.12.2009
Autor: sammy_86

Aufgabe
[mm] x_{i-1} \le x_{i} [/mm] ; [mm] x\in [x_{i-1},x_{i}] [/mm]

[mm] |f(x)-f_{n}(x)| [/mm] = [mm] \bruch{1}{2} f''(\xi)(x_{i}-x_{i-1})^2-\bruch{1}{2} f''(\bar{\xi})(x-x_{i-1})(x_{i}-x_{i-1}) [/mm]

[mm] |f(x)-f_{n}(x)| \le \bruch{1}{2} |f''(\xi)|(x_{i}-x_{i-1})^2+\bruch{1}{2}|f''(\bar{\xi})||(x-x_{i-1})||(x_{i}-x_{i-1})| [/mm]

Hallo Leute,
hab da eine Frage an euch:
es geht um die Fehlerabschätzung in der Maximum Norm, hab schon eine Zeitlang mit suchen verbracht, hat aber nicht wirklich was gebracht:
Um die Sache kurz zu machen, es ist nur ein Vorzeichen mit dem ich nicht zurechtkomme (Die Rechnung selber ist ziemlich lang deswegen werd ich mich aufs nötigste beschränken):
Es geht um das Minus welches in der zweiten Zeile zu einem Plus wird, könnte mir einer einen Tipp geben wieso?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Viele Grüße
Sammy

        
Bezug
Fehlerabschätzung Maximum Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Mi 30.12.2009
Autor: fred97


> [mm]x_{i-1} \le x_{i}[/mm] ; [mm]x\in [x_{i-1},x_{i}][/mm]
>  
> [mm]|f(x)-f_{n}(x)|[/mm] = [mm]\bruch{1}{2} f''(\xi)(x_{i}-x_{i-1})^2-\bruch{1}{2} f''(\bar{\xi})(x-x_{i-1})(x_{i}-x_{i-1})[/mm]
>  
> [mm]|f(x)-f_{n}(x)| \le \bruch{1}{2} |f''(\xi)|(x_{i}-x_{i-1})^2+\bruch{1}{2}|f''(\bar{\xi})||(x-x_{i-1})||(x_{i}-x_{i-1})|[/mm]
>  
> Hallo Leute,
>  hab da eine Frage an euch:
>  es geht um die Fehlerabschätzung in der Maximum Norm, hab
> schon eine Zeitlang mit suchen verbracht, hat aber nicht
> wirklich was gebracht:
>  Um die Sache kurz zu machen, es ist nur ein Vorzeichen mit
> dem ich nicht zurechtkomme (Die Rechnung selber ist
> ziemlich lang deswegen werd ich mich aufs nötigste
> beschränken):
>  Es geht um das Minus welches in der zweiten Zeile zu einem
> Plus wird, könnte mir einer einen Tipp geben wieso?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Viele Grüße
>  Sammy


Deine erste Zeile ist von der Form

         $|a| = b-c$

Also (Dreiecksungleichung)

         $|a| = b-c = |b-c| [mm] \le [/mm] |b|+|c|$

FRED

Bezug
        
Bezug
Fehlerabschätzung Maximum Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Mi 30.12.2009
Autor: sammy_86

Das ging ja ganz fix, danke @Fred

Bezug
                
Bezug
Fehlerabschätzung Maximum Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Mi 30.12.2009
Autor: fred97


> Das ging ja ganz fix,


Ja , so ist das in diesem tollen Forum

FRED




danke @Fred


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]