matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenFehlerabschätzung Galerkin
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentialgleichungen" - Fehlerabschätzung Galerkin
Fehlerabschätzung Galerkin < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerabschätzung Galerkin: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:42 Fr 05.09.2008
Autor: Pondy

Hallo,
ich versuche gerade eine Abschätzung für den Fehler des dG(0)-Verfahrens aus dem Skript von R.Rannacher ([]http://numerik.uni-hd.de/~lehre/notes/num1/numerik1.pdf  , Seite 107) nachzuvollziehen, komme aber nicht weiter.
Und zwar handelt es sich um die AWA   u'(t)=f(t)   [mm] t\in [/mm] I=[0,1]   u(0)=0.
Das dG(0)-Verfahren sieht dann ja wie folgt aus:
[mm] U^-_n=U_{n-1}^+=\integral_{I_n}{f(t) dt}+ U_{n-1}^- [/mm] ,
wobei [mm] v_n^-:=\limes_{t\uparrow t_n}v(t) [/mm] und [mm] v_n^+:=\limes_{t\downarrow t_n}v(t) [/mm] und [mm] I_n:=(t_{n-1},t_n]. [/mm]
Jetzt wurde [mm] U_n^-:=U_n [/mm] gesetzt, da U im dG(0)-Verfahren ja konstant ist. Und es soll das Integral über die Tangententapezformel approximiert werden. Dann ergibt sich ja der punktweise Fehler (u ist exakte Lösung der AWA) [mm] u_n-U_n=e_n=e_{n-1}+\bruch{1}{24}h_n^3f"(\xi_n) ,\xi_n\in I_n. [/mm]

So. bis hierher kann ich alles noch gut nachvollziehen. Doch nun soll aus den punktweisen Fehlern folgendes folgen:
[mm] \sup_{I}|e|\le\max_{1\le n\le N}\{h_n \sup_{I_n}|u'|+\bruch{1}{24}T h_n^2 \sup_{I_n}|f''|\}. [/mm]


Aus dem Mittelwertsatz hab ich gefolgert, dass
[mm] |e(t)|\le h_n\sup_{I_n}|u'|+|e_n| [/mm] seinen muss, somit bräuchte ich ja nurnoch [mm] |e_n| [/mm] so abschätzen, dass es passt. das krieg ich aber nicht hin.
Es ist ja [mm] e_n [/mm] = [mm] e_{n-1}+\bruch{1}{24}h_n^3f"(\xi_n)=e_0+\summe_{k=1}^{n}\bruch{1}{24}h_k^3f"(\xi_k) [/mm]
und das ist (mit [mm] e_0=0) [/mm] wieder kleiner als [mm] \summe_{k=1}^{n}\bruch{1}{24}h_k^3\sup_{I_k}|f''|. [/mm]
Nun hab ich dort aber diese Summe, und die bekomme ich nicht weg.
Oder gehe ich schon falsch an die Sache ran?

Ich hoffe ihr könnt mir helfen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke schonmal.



        
Bezug
Fehlerabschätzung Galerkin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 So 07.09.2008
Autor: Pondy

Hallo,
ich hoffe es findet sich noch jemand, der mir bezüglich meiner Frage helfen kann.
Ich hab immernoch das gleiche Problem
(und habe diese Fragen nur nochmal gestellt um euch mehr Zeit zu geben.)
Ich habe schon seit 2 Wochen versucht diese Ungleichung zu bekommen, kriege es aber einfach nicht hin.
Helft mir !!! *g*

LG Pondy

Bezug
        
Bezug
Fehlerabschätzung Galerkin: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Mo 15.09.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]