matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFehlerabschätz. Polynominter.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Fehlerabschätz. Polynominter.
Fehlerabschätz. Polynominter. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerabschätz. Polynominter.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Do 12.05.2011
Autor: qsxqsx

Hallo,

Auf Wikipedia gibts unter []Polynominterpolation unter dem Titel Fehlerabschätzung folgende angabe, für f(x) die Funktion und P(x) die Interpolationsfunktion:

"Gegeben sei eine Funktion f von der n+1 Funktionswerte an der Stelle [mm] x_{i} [/mm] durch P(x) gehen. I ist das kleineste Intervall, dass die Stützstellen [mm] x_{i} [/mm] und eine Stelle x enthält. Ausserdem ist f (n+1) mal stetig differenzierbar in I. Dann gibt es ein [mm] \epsilon \in [/mm] I sodass

f(x) - P(x) = [mm] \bruch{f^{(n+1)}(\epsilon)}{(n+1)!}*\produkt_{i=0}^{n}(x-x_{i}) [/mm]

..."

...also kann man trivialerweise wie folgt abschätzen, dass
f(x) - P(x) [mm] \le \bruch{||f^{(n+1)||_{\infty}}}{(n+1)!}*\produkt_{i=0}^{n}(x-x_{i}) [/mm]

Frage: Wie wird das hergeleitet, dass f(x) - P(x) = ... ???
Okay, wenn ich die Gleichung n mal Ableite, so verschwindet P(x) ja und f(x) wird zu [mm] f^{(n)}(x). [/mm] Auf der rechten seite verschwinden alle Terme wo x kleinere Potenzen als n hatte. Aber was das genau mit dem Fehler zu tun hat seh ich doch nicht? (Vielleicht hat das ja auch gar keinen Zusammenhang).

Grüsse

        
Bezug
Fehlerabschätz. Polynominter.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:45 Do 12.05.2011
Autor: qsxqsx

Hallo Leute,

Habe einen Beweis gefunden, gebe ihn hier noch an:

Für x = [mm] x_{i}, [/mm] es ist trivial zu sehen, dass die Gleichung stimmt. Es sind also noch die Bereiche zwischen den [mm] x_{i} [/mm] zu betrachten.

Sei M = [mm] \produkt_{i=0}^{n}(x-x_{i}). [/mm] Wir halten x fixiert und betrachten g:[a,b] [mm] \mapsto \IR [/mm] mit
g(z) = f(z) - P(z) - [mm] M(z)*\bruch{f(x) - P(x)}{M(x)} [/mm] mit z [mm] \in [/mm] [a,b]. g ist (n+1) mal stetig differenzierbar und hat (n+2) Nullstellen. Die Ableitung muss also mindestens (n+1) Nullstellen haben. Die (n+1)-te Ableitung muss also mindestens eine Nullstelle auf [a,b] haben, welche wir [mm] \epsilon [/mm] nennen. Für dieses gilt
0 = [mm] f^{(n+1)}(\epsilon) [/mm] - [mm] (n+1)!*\bruch{f(x) - P(x)}{M} [/mm]

Grüsse


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]