matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikFederauslenkung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mechanik" - Federauslenkung
Federauslenkung < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Federauslenkung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 So 18.04.2010
Autor: Bit2_Gosu

Hi!

Ich habe von Physik nicht sehr viel Ahnung und versuche gerade als Informatikstudent folgendes Problem zu lösen:

Ein Gewicht hängt an einer Feder mit Federkonstante c. Die Dämpfung ist d und die Masse des Gewichts m.
Es gilt ja (i.d.R.) cx + dx' + mx'' = 0   mit x = at² (x ist die Auslenkung der Feder).

Jetzt möchte ich die Auslenkung der Feder in Abhängigkeit von der Zeit ausrechnen. Und hier habe ich ein Verständisproblem. Wenn ich jetzt obige Gleichung nach x auflöse (wobei das schon hart würde) habe ich die Auslenkung in Abhängigkeit von c, d und m aber nicht von t.
Was tun?



        
Bezug
Federauslenkung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 18.04.2010
Autor: Kroni

Hi,

die Differentialgleichung

[mm] $m\ddot{x}+d\dot{x}+cx=0$ [/mm] wobei die Punkte fuer die Ableitung nachd er Zeit stehen, stimmt.

Wie kommst du darauf, dass [mm] $x=at^2$? [/mm] meinst du damit, dass die Auslenkung $x(t)$ proportional zum Quadrat der Zeit ist? Das gilt hier nicht, das waere nur im Falle einer gleichmaessig beschleunigten Bewegung in bestimmen Faellen gueltig.

Das, was du tun musst, ist, die Differentialgleichung oben loesen, denn die Striche bzw. Punkte deuten ja eine Ableitung von x nach der Zeit an.

Wenn zB $x' = ax$ gilt, dann kann man das ja auch nicht einfach nach $x$ aufloesen, sondern man muss diese Gleichung loesen.

Das geht aber meist, wenn man fuer $x(t)$ einen sogenannten $e$-Ansatz macht, naemlich
[mm] $x(t)=Ae^{\lambda t}$. [/mm] Wenn man das einsetzt, dann kann man [mm] $\lambda$ [/mm] ausrechnen, und bekommt so eine allgemeine Loesung der Differentialgleichung, die man dann noch an Anfangsbedingungen anpassen kann, um eine spezielle Loesung zu bekommen.

Ich hoffe, das hilft dir ein wenig weiter.

LG

Kroni

Bezug
        
Bezug
Federauslenkung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 So 18.04.2010
Autor: leduart

Hallo
wenn du so wenig Ahnung hast, dass du "nach x-auflösen" willst lies erst mal in wiki nach:
http://de.wikipedia.org/wiki/Ged%C3%A4mpfte_Schwingung#Ged.C3.A4mpfte_Schwingung
(kennt man als Informatiker keine differentialgleichungen?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]