matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieFast überall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Fast überall
Fast überall < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fast überall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:37 Fr 13.08.2010
Autor: hula

Hallo Leute,

Ich möchte folgendes zeigen:

Sei $\ f $ eine nicht negative messbare Funktion, [mm] f: X \to [0,+ \infty] [/mm]. Wobei $\ (X, [mm] \mathcal{M}, \mu) [/mm] $ ein Massraum ist.

[mm] \integral f d\mu (x) = 0 [/mm] genau dann, wenn $\ f = 0$ fast überall.

Also ich bin bei der Richtung $\ [mm] \Rightarrow [/mm] $. Ich zeige dir Kontraposition:

Sei also $\ f > 0 $ fast überall zu zeigen ist, dass das $\ [mm] \integral [/mm] f > 0$.
Dazu sei [mm] X_k := \{ x \in X | f(x) \ge \bruch{1}{k} \} [/mm] ( $\ k [mm] \ge [/mm] 1$). Dass sind messbare Mengen.  Zudem ist $\ [mm] (X_k) [/mm] $ eine aufsteigende Folge. Nun zu meinen 2 Fragen:

1. Wieso ist [mm] \bigcup_k X_k = \{x \in X | f(x)[/mm] > [mm] 0 \} [/mm] und nicht gröser gleich.
2. Wieso gilt folgendes: [mm] 0 < \mu{\{x \in X | f(x) > 0\}} [/mm].

Ich weiss, dass mein $\ f $ nur auf Mengen mit Masse null verschwindet, sonst ist es immer grösser als null. Aber es könnte doch trotzdem sein, dass das Mass dieser Menge auch null ist. Oder woraus folgt das?
Schon mal danke für die Ausführungen!

greetz hula

        
Bezug
Fast überall: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Fr 13.08.2010
Autor: fred97


> Hallo Leute,
>  
> Ich möchte folgendes zeigen:
>  
> Sei [mm]\ f[/mm] eine nicht negative messbare Funktion, [mm]f: X \to [0,+ \infty] [/mm].
> Wobei [mm]\ (X, \mathcal{M}, \mu)[/mm] ein Massraum ist.
>
> [mm]\integral f d\mu (x) = 0 [/mm] genau dann, wenn [mm]\ f = 0[/mm] fast
> überall.
>
> Also ich bin bei der Richtung [mm]\ \Rightarrow [/mm]. Ich zeige dir
> Kontraposition:
>  
> Sei also [mm]\ f > 0[/mm] fast überall

Das ist sehr unglücklich ausgedrückt !!



>  zu zeigen ist, dass das [mm]\ \integral f > 0[/mm].
>  
> Dazu sei [mm]X_k := \{ x \in X | f(x) \ge \bruch{1}{k} \}[/mm] ( [mm]\ k \ge 1[/mm]).
> Dass sind messbare Mengen.  Zudem ist [mm]\ (X_k)[/mm] eine
> aufsteigende Folge. Nun zu meinen 2 Fragen:
>  
> 1. Wieso ist [mm]\bigcup_k X_k = \{x \in X | f(x)[/mm] > [mm]0 \} [/mm] und
> nicht gröser gleich.

Die Inklusion  

[mm]\bigcup_k X_k \subseteq \{x \in X | f(x)[/mm] > [mm]0 \} [/mm]

dürfte klar sein, oder ?

Sei x [mm] \in [/mm] X und f(x)>0. Dann gibt es ein k [mm] \in \IN [/mm] mit f(x) [mm] \ge [/mm] 1/k, also: x [mm] \in X_k. [/mm]


>  2. Wieso gilt folgendes: [mm]0 < \mu{\{x \in X | f(x) > 0\}} [/mm].


Das ist doch gerade Deine Annahme bei Deinem Widerspruchsbeweis !!!!


FRED

>  
> Ich weiss, dass mein [mm]\ f[/mm] nur auf Mengen mit Masse null
> verschwindet, sonst ist es immer grösser als null. Aber es
> könnte doch trotzdem sein, dass das Mass dieser Menge auch
> null ist. Oder woraus folgt das?
>  Schon mal danke für die Ausführungen!
>
> greetz hula


Bezug
                
Bezug
Fast überall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Fr 13.08.2010
Autor: hula

Erste Frage ist geklärt, da hatte ich wohl ein Brett vor dem Kopf. Aber danke für deine Antwort!

>  2. Wieso gilt folgendes: [mm]0 < \mu{ (\{x \in X | f(x) > 0\}) } [/mm].
>  
>
> Das ist doch gerade Deine Annahme bei Deinem
> Widerspruchsbeweis !!!!
>  
>
> FRED
>  >

Es kann sein, dass ich etwas falsch verstehe: Was ich sicher sagen kann, ist, dass $\ [mm] \mu{\{x \in X | f(x) = 0\}} [/mm] = 0 $. Die Mengen für die das gilt sind "klein" (im Sinne, dass sie eben Masse 0 haben). Aber woher weiss ich, dass die anderen Mengen nicht auch Masse 0 haben könnten. Es könnte doch z.B. sein $\ [mm] \mu{(X)} [/mm] = 0$. Sicherlich ist das nur eine Kleinigkeit, aber um präzise zu sein, müsste man doch sagen, dass es Mengen gibt, die nicht verschwindende Masse haben.

Bezug
                        
Bezug
Fast überall: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Fr 13.08.2010
Autor: fred97

Frage: was bedeutet  $ \ f = 0 $ fast überall   für eine nichtnegative Funktion ?

Antwort: [mm] $\mu (\{x \in X: f(x)>0 \})= [/mm] 0

Frage: was ist die Negation von: $ \ f = 0 $ fast überall   ????ß

FRED

Bezug
                                
Bezug
Fast überall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:48 Fr 13.08.2010
Autor: hula

shame on me.....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]