matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Fasskreis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Fasskreis
Fasskreis < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fasskreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 09.08.2012
Autor: Gabs

Aufgabe
Konstruiere denjenigen Punkt, von dem aus alle Seiten des Dreiecks ABC mit a = 7 cm, b = 8 cm und c = 9 cm unter dem gleichen Winkel erscheinen!


Gebe ich mir einen Winkel vor (z. B. 130°, wie im Bild), so kann ich mühelos um jede Dreiecksseite einen Fasskreis zeichnen. Die Fasskreise schneiden sich paarweise. In den Schnittpunkten P, Q und R können jeweil 2 Seiten unter demselben Winkel betrachtet werden.

Dies ist aber nicht gefragt. Im Bild kann man lediglich erahnen, dass es diesen „einen“ Punkt geben muss.

Wie finde ich, ohne Kenntnis der Winkelgröße den Punkt, in dem sich alle 3 Fasskreise schneiden?

<IMG class=preview alt=1 src="editor/extrafiles/images/imageplaceholder.jpg" _cke_realelement="true">

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Fasskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Do 09.08.2012
Autor: Diophant

Hallo,

meiner Ansicht nach hat man hier den Peripheriewinkel zu den Fasskreisen. Denn man stelle sich in das Dreieck genau an diesen Punkt. Dann sollte man doch alle drei Seiten fein säuberlich nebeneinander sehen. :-)


Gruß, Diophant

Bezug
        
Bezug
Fasskreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Do 09.08.2012
Autor: Al-Chwarizmi

Man kann sich leicht klar machen, wie groß die drei
(identischen) Winkel sein müssen, damit es klappt.

LG    Al-Chw.

Bezug
        
Bezug
Fasskreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Do 09.08.2012
Autor: Gabs

Na klar. Der Vollwinkel von 360° muss gleichmäßig auf drei Seiten verteilt werden. Dies ergibt einen Betrachtungswinkel (Peripheriewinkel) von 120° für jede Seite.

Bezug
                
Bezug
Fasskreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Do 09.08.2012
Autor: Diophant

Hallo,

> Na klar. Der Vollwinkel von 360° muss gleichmäßig auf
> drei Seiten verteilt werden. Dies ergibt einen
> Betrachtungswinkel (Peripheriewinkel) von 120° für jede
> Seite.

Genau. Kommst du damit schon weiter (->bspw. gleichseitige Dreiecke über den Seiten errichten :-) )?


Gruß, Diophant


Bezug
                        
Bezug
Fasskreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Do 09.08.2012
Autor: Gabs

Danke, stand auf der Leitung. Funktioniert hervorragend.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]