matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFamilien von Vektorräumen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Familien von Vektorräumen
Familien von Vektorräumen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Familien von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 05.12.2007
Autor: easy2311

Aufgabe
Seien V ein K-Vektorraum und W' und W´´ k-lineare Unterräume.
(i) Zeigen Sie [mm] W'\cap [/mm] W'' ist K-lin. Unterraum.
(ii) Zeigen Sie W'+W'' ist K-lin. Unterraum von V.
(iii) Verallgemeinern Sie die Aussagen (i)



Die Aufgaben (i) und (ii) habe ich bereits gelöst. Bei den Familien weiß ich nun nich was ich genau zeigen soll. Unsere Seminarleiter meinte: Was tritt für eine Eischränkung im abzählbar unendlichen Fall auf? Naja, das es eine Summe gibt von Variablen, die ja nie endet, weil die menge ja unendlich ist...

        
Bezug
Familien von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Do 06.12.2007
Autor: angela.h.b.


> Seien V ein K-Vektorraum und W' und W´´ k-lineare
> Unterräume.
>  (i) Zeigen Sie [mm]W'\cap[/mm] W'' ist K-lin. Unterraum.
>  (ii) Zeigen Sie W'+W'' ist K-lin. Unterraum von V.
>  (iii) Verallgemeinern Sie die Aussagen (i)
>  
>
> Die Aufgaben (i) und (ii) habe ich bereits gelöst. Bei den
> Familien weiß ich nun nich was ich genau zeigen soll.

Hallo,

hast Du daran gedacht, daß wir Dich nicht ins Seminar begleiten?
Welche Familien bitte?

> Unsere Seminarleiter meinte: Was tritt für eine
> Eischränkung im abzählbar unendlichen Fall auf? Naja, das
> es eine Summe gibt von Variablen, die ja nie endet, weil
> die menge ja unendlich ist...

Was genau ist denn Deine Frage?

Nun gut, ohne die Frage zu kennen, gebe ich trotzdem mal eine Antwort: in der linearen Algebra sind Linearkombinationen immer endlich, daher kann man nur endliche Summen v. Vektoren betrachten,
mit der Folge, daß man sich erstmal überlegen müßte, wie man [mm] W_1+W_2+W_3+... [/mm] sinnvoll definiert.

Gruß v. Angela



Bezug
                
Bezug
Familien von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Do 06.12.2007
Autor: easy2311

Manchmal funktioniert da hier nicht richtig mit dem eintippen. die Aufgabe (iii) war: Verallgemeinern Sie die Aussagen (i) und (ii) auf den Fall beliebiger Familien von Vektorräumen.
Es hat also die Hälfte gefehlt bei der Aufgabenstellung, tut mir leid, war keine böse Absicht!
Naja auf jeden Fall sollen wir halt den unendl. abzählbaren Raum betrachten und sagen was dort für eine Einschränkung auftritt. Man kann keine Summe von einer unendl Menge bilden???

Bezug
                        
Bezug
Familien von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Do 06.12.2007
Autor: angela.h.b.


>  Naja auf jeden Fall sollen wir halt den unendl.
> abzählbaren Raum betrachten

Was ist denn damit gemeint?

> und sagen was dort für eine
> Einschränkung auftritt. Man kann keine Summe von einer
> unendl Menge bilden???

Doch, Du kannst ja durchaus [mm] <\vektor{1 \\ 0}>+<\vektor{0 \\ 1}> [/mm] bilden, und beide Räume haben keine endliche Anzahl von Elementen.

Aber schau mal in Deinem Skript nach, wie Linearkombination definiert ist.
Du kannst nicht unendlich viele Vektoren summieren, Linearkombinationen sind endliche Summen.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]