matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFamilie mit Kindern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Familie mit Kindern
Familie mit Kindern < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Familie mit Kindern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 So 27.12.2009
Autor: jaruleking

Aufgabe
Die Wahrscheinlichkeit, dass eine Familie k Kinder hat, sei wie folgt verteilt:

Anzahl der Kinder: Wahrscheinlichkeit

0: 0,3

1: 0,2

2: 0,2

3: 0,15

4: 0,1

5: 0,05

[mm] \ge [/mm] 6: 0,0

Jungen und mädchen seien gleichverteilt.

Es wird zufällig eine Familie mit einem Jungen ausgewählt. Berechne dei Wahrscheinlichkeit, dass dieser Junge eine Schwester hat.

Lösung:

Es sei A die Menge, dass ein Mädchen in einer festen Familie lebt und B, dass ein Junge in einer festen Familie let. P sei die Laplace Verteilung. Dann gilt nach der totalen Wahrscheinlichkeit:

P(A)=P(B)=1/2 (0,2) + 3/4 (0,2) + 7/8 (0,15) + 15/16 (0,1) + 31/32 (0,05) = 0,523438

Nun berechnen wir die W, dass ein Junge und ein Mädchen in einer festen Familie leben, also

[mm] P(A\cap [/mm] B)=2/4 (0,2) + 6/8 (0,15) + 14/16 (0,1) + 30/32 (0,05) = 0,346875

Die Lösung des Problems liefert damit die bedingte Wahrscheinlichkeit

[mm] P(A//B)=\bruch{P(A\cap B)}{P(B)}=\bruch{0,346875}{0,523438}=0,662687 [/mm]



Hi, bei dieser Aufgabe habe ich leider am Anfang nicht alles verstanden. deswegen habe ich dazu mal paar fragen.

Ich weiß, dass für die Totale W. gilt: [mm] P(A)=\summe_{i \in I}^{}P(A//B_i)P(B_i) [/mm]

Aber wie wenden die das hier drauf an:

P(A)=P(B)=1/2 (0,2) + 3/4 (0,2) + 7/8 (0,15) + 15/16 (0,1) + 31/32 (0,05) = 0,523438???

Die zweite Zahl, ist die W für die Kinder, aber wo kommen z.B. 1/2, 3/4, usw. her???

Und die zweite Frage, wie berechnen die [mm] P(A\cap [/mm] B)=2/4 (0,2) + 6/8 (0,15) + 14/16 (0,1) + 30/32 (0,05) = 0,346875 ???? Das habe ich auch nicht so verstanden.


Danke für Hilfe.

Gruß

        
Bezug
Familie mit Kindern: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 27.12.2009
Autor: Sax

Hi, Jaruleking,

zunächst zu deiner zweiten Frage :

> Und die zweite Frage, wie berechnen die [mm]P(A\cap[/mm] B)=2/4
> (0,2) + 6/8 (0,15) + 14/16 (0,1) + 30/32 (0,05) = 0,346875
> ???? Das habe ich auch nicht so verstanden.

Es handelt sich um Produkte, also
2/4 * 0,2  +  6/8 * 0,15  +  ...

Nun zu deiner ersten Frage :

Das erkennst du, wenn du die Reihenfolge der Faktoren umkehrst und dir einen Ereignisbaum vorstellst :  erste Stufe (erster Faktor) : Anzahl der Kinder ;  zweite Stufe (zweiter Faktor) : Aufteilung nach Geschlecht.

Ich mache das mal am Beispiel der jeweils zweiten Summanden deiner beiden Summen klar :

In P(A)= ...  ergibt er sich so : die W., dass eine Familie zwei Kinder hat, ist 0,2 (erster Faktor). Die vier Möglichkeiten für zwei Kinder sind JJ, JM, MJ, MM. In dreien davon kommt ein Junge vor, also W. 3/4 (zweiter Faktor).

In der zweiten Summe analog : die W. für drei Kinder ist mit 0,15 gegeben, dafür gibt es die acht (gleichverteilten) Möglichkeiten JJJ, JJM, JMJ, JMM, MJJ, MJM, MMJ, MMM und in sechs davon gibt es beide Geschlechter.

Hoffe, das hilft dir.
Gruß Sax.

Bezug
                
Bezug
Familie mit Kindern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 So 27.12.2009
Autor: jaruleking

Super vielen Dank.

Ja jetzt habe ich es verstanden.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]