matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationFaltungssatz Existenzbeweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Laplace-Transformation" - Faltungssatz Existenzbeweis
Faltungssatz Existenzbeweis < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltungssatz Existenzbeweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:23 Do 20.01.2011
Autor: tommi89

Aufgabe
f und g [mm] \in L_{\gamma}. [/mm]
Finden Sie ein geeignetes [mm] \gamma \in \IR [/mm] , so dass f * g von 0 bis t existiert.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Abend.

Mich ärgert der Existenzbeweis schon etwas länger. Mein Lösungsvorschlag wäre der folgende:

zu zeigen ist:
|f(t)| [mm] \le [/mm] M [mm] e^{\gamma t}. [/mm]

Wobei f(t) die Faltung f*g darstellt.
Weiters hab ich über die Dreiecksungleichung
[mm] |\integral_{0}^{t}{f(\tau)g(t-\tau) d\tau}| \le \integral_{0}^{t}{|f(\tau)g(t-\tau)| d\tau} [/mm]
die Form:
[mm] \integral_{0}^{t}{|f(\tau)g(t-\tau)| d\tau} \le [/mm] M [mm] e^{\gamma t}. [/mm]

Da nun die Faltung existiert, gibt es selbst für [mm] \gamma [/mm] = 0 ein M, für das die Ungleichung gilt.

Jedoch hab ich hier wohl einen Fehler in meinem Rechengang, bzw gilt es das M zu bestimmen...

Wäre für jede Hilfe dankbar :-)

lg tommi

        
Bezug
Faltungssatz Existenzbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Fr 21.01.2011
Autor: fred97


> Finden Sie ein geeignetes [mm]\gamma \in \IR[/mm] , so dass f * g
> von 0 bis t existiert.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Guten Abend.
>  
> Mich ärgert der Existenzbeweis schon etwas länger. Mein
> Lösungsvorschlag wäre der folgende:
>  
> zu zeigen ist:
>  |f(t)| [mm]\le[/mm] M [mm]e^{\gamma t}.[/mm]
>  
> Wobei f(t) die Faltung f*g darstellt.
>  Weiters hab ich über die Dreiecksungleichung
>  [mm]|\integral_{0}^{t}{f(\tau)g(t-\tau) d\tau}| \le \integral_{0}^{t}{|f(\tau)g(t-\tau)| d\tau}[/mm]
>  
> die Form:
>  [mm]\integral_{0}^{t}{|f(\tau)g(t-\tau)| d\tau} \le[/mm] M
> [mm]e^{\gamma t}.[/mm]
>  
> Da nun die Faltung existiert, gibt es selbst für [mm]\gamma[/mm] =
> 0 ein M, für das die Ungleichung gilt.
>  
> Jedoch hab ich hier wohl einen Fehler in meinem Rechengang,
> bzw gilt es das M zu bestimmen...
>  
> Wäre für jede Hilfe dankbar :-)

Wie soll man Dir helfen ? Über f und g ist absolut nichts bekannt !!!!!!!!!!!!!!!!!!!!!!!!!!!!


FRED

>  
> lg tommi


Bezug
                
Bezug
Faltungssatz Existenzbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:43 Fr 21.01.2011
Autor: tommi89


> > Finden Sie ein geeignetes [mm]\gamma \in \IR[/mm] , so dass f * g
> > von 0 bis t existiert.
>  >  
> >
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  >  
> > Guten Abend.
>  >  
> > Mich ärgert der Existenzbeweis schon etwas länger. Mein
> > Lösungsvorschlag wäre der folgende:
>  >  
> > zu zeigen ist:
>  >  |f(t)| [mm]\le[/mm] M [mm]e^{\gamma t}.[/mm]
>  >  
> > Wobei f(t) die Faltung f*g darstellt.
>  >  Weiters hab ich über die Dreiecksungleichung
>  >  [mm]|\integral_{0}^{t}{f(\tau)g(t-\tau) d\tau}| \le \integral_{0}^{t}{|f(\tau)g(t-\tau)| d\tau}[/mm]
>  
> >  

> > die Form:
>  >  [mm]\integral_{0}^{t}{|f(\tau)g(t-\tau)| d\tau} \le[/mm] M
> > [mm]e^{\gamma t}.[/mm]
>  >  
> > Da nun die Faltung existiert, gibt es selbst für [mm]\gamma[/mm] =
> > 0 ein M, für das die Ungleichung gilt.
>  >  
> > Jedoch hab ich hier wohl einen Fehler in meinem Rechengang,
> > bzw gilt es das M zu bestimmen...
>  >  
> > Wäre für jede Hilfe dankbar :-)
>  
> Wie soll man Dir helfen ? Über f und g ist absolut nichts
> bekannt !!!!!!!!!!!!!!!!!!!!!!!!!!!!
>  
>
> FRED
>  >  
> > lg tommi
>  

Ah, mein Fehler!

f und g sind aus [mm] L_{\gamma} [/mm] also deren Laplacetransformierte existieren für das [mm] \gamma. [/mm]

Werds gleich nochmal reineditieren, danke für den Hinweis :-)


Bezug
        
Bezug
Faltungssatz Existenzbeweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Do 27.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]