matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFaltungen abschätzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Faltungen abschätzen
Faltungen abschätzen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltungen abschätzen: Frage zu Abschätzung
Status: (Frage) beantwortet Status 
Datum: 17:55 Fr 19.01.2018
Autor: Tipsi

Aufgabe
Hallo liebe Mitglieder,
ich habe einen Beweis betrachtet, in dessen Verlauf mir eine Ungleichung unklar ist:
Ist [mm]f \in L^1, g \in C_c^k[/mm], dann gilt für die Faltung: |f*g(x)| [mm]\leq \int_{x+supp(g)}|f|d\lambda^n[/mm].





Mir ist nicht klar, wie man auf die Ungleichung kommt.

        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Sa 20.01.2018
Autor: fred97


> Hallo liebe Mitglieder,
> ich habe einen Beweis betrachtet, in dessen Verlauf mir
> eine Ungleichung unklar ist:
> Ist [mm]f \in L^1, g \in C_c^k[/mm], dann gilt für die Faltung:
> |f*g(x)| [mm]\leq \int_{x+supp(g)}|f|d\lambda^n[/mm].
>  
>
>
>
> Mir ist nicht klar, wie man auf die Ungleichung kommt.

Hast Du einige Vor. an g vergessen, etwa |g| [mm] \le [/mm] 1 ?

Nenne bitte alle Vor., man für den Beweis braucht .


Bezug
                
Bezug
Faltungen abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Sa 20.01.2018
Autor: Tipsi

Hallo, danke für deine Beteiligung am Thread!

Das sind eigentlich alle Voraussetzungen. Es ist eine Umformung im Beweis von "Für [mm]f\in L^1(\mathbb R^n)[/mm] und [mm]g \in C_c^k(\mathbb R^n)[/mm] mit [mm]0 \leq k \leq \infty[/mm] gilt [mm]f \ast g \in C_0^k(\mathbb R^n)[/mm]. "

Bezug
                        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Mo 22.01.2018
Autor: Gonozal_IX

Hey,

da fred sich bisher nicht zurückmeldete nochmal als Klarstellung, was fred implizit meinte: Ohne weitere Annahmen ist die Aussage falsch.

Nimm bspw. $f = [mm] 1_{[-1,1]}$ [/mm]

Dann ist [mm] $(f\*g)(x) [/mm] = [mm] \int_\IR [/mm] f(t) g(x-t) dt = [mm] \int_{-1}^1 [/mm] g(x-t) dt$

Und [mm] $\int_{x+\text{supp}(g)} [/mm] |f| [mm] d\lambda [/mm] = [mm] \lambda(\{\{x + \text{supp(g)}\} \cap{[-1,1]})$ Setzt du nun $x=0$ und $\text{supp}(g) = [-1,1]$ soll nach dem Satz also gelten: $|(f\*g)(0)| = \int_{-1}^1 g(t) dt \le \lambda([-1,1]) = 2$ Dabei ist $ g \in C_c^k(\mathbb R ) $ beliebig bis auf die Festlegung $\text{supp}(g)} [/mm] = [-1,1]$

Dir ist hoffentlich klar, dass das nicht funktioniert…

Anders sieht die Sache aus, wenn man $|g| [mm] \le [/mm] 1$ annimmt, dann folgt sofort:

[mm] $|(f\*g)(x)| \le \int_{\IR^n} [/mm] |f(t) g(x-t)| dt [mm] \le \int_{\IR^n} [/mm] |f(t)| [mm] 1_{\text{supp}(g)}(x-t) [/mm] dt = [mm] \int_{x +\text{supp}(g)} [/mm] |f(t)| dt$

Gruß,
Gono

Bezug
                                
Bezug
Faltungen abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:07 Di 23.01.2018
Autor: Tipsi

Okay, danke Gono!
In dem Skript steht es leider genau so, wie ich es euch hier geschrieben habe.
Aber vlt. ist dem Autor bei dem Beweis oder dem Satz dann einfach ein Fehler unterlaufen.
LG
Tipsi

Bezug
                                        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Di 23.01.2018
Autor: Gonozal_IX

Hiho,

> Okay, danke Gono!
> In dem Skript steht es leider genau so, wie ich es euch
> hier geschrieben habe.
> Aber vlt. ist dem Autor bei dem Beweis oder dem Satz dann
> einfach ein Fehler unterlaufen.

hast du einen Link?
Mach dir auch klar, dass die Einschränkung $|g| [mm] \le [/mm] 1$ gar nicht relevant ist!

Betrachten wir nämlich die Konstante $c = [mm] \max_{x\in \text{supp(g)}} [/mm] |g(x)|$ (warum existiert die?) so ist [mm] $c\ge [/mm] 0$, der Fall $c=0$ ist trivial (warum?), sei also $c > 0$, dann gilt

$ f [mm] \ast [/mm] g [mm] \in C_0^k(\mathbb R^n) \gdw \frac{1}{c}(f \ast [/mm] g) [mm] \in C_0^k(\mathbb R^n) [/mm] $

Aber:  [mm] $\frac{1}{c}(f \ast [/mm] g) = f [mm] \ast \frac{g}{c} [/mm] = [mm] f\ast \overline{g}$ [/mm]

Und [mm] $\overline{g}$ [/mm] erfüllt nun alle Bedingungen von $g$ und zusätzlich gilt [mm] $\overline{g} \le [/mm] 1$

Und wir erhalten

$ f [mm] \ast [/mm] g [mm] \in C_0^k(\mathbb R^n) \gdw [/mm] f [mm] \ast \overline{g} \in C_0^k(\mathbb R^n) [/mm] $

D.h. wir brauchen immer nur Faltungen zu überprüfen, in denen $|g| [mm] \le [/mm] 1$ gilt.



Gruß,
Gono


Bezug
                                                
Bezug
Faltungen abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Di 23.01.2018
Autor: Tipsi

Hallo Gono, danke für deine Erklärungen.
Einen Link gibt es nicht, aber ich häng mal zwei Fotos von dem Satz an (die Qualität ist leider sehr schlecht, weil meine Handykamera keine Scharfstellfunktion hat).


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
                                                        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Mi 24.01.2018
Autor: Gonozal_IX

Aha…

so wie ich das sehe steht da "für positive g mit [mm] $||g||_1 [/mm] = 1$"
Wo wir bei einer zusätzlichen Eigenschaft wären und mindestens mein Gegenbeispiel nicht mehr funktioniert… nächste Mal doch bitte alle Eigenschaften angeben.

Gruß,
Gono

Bezug
                                                                
Bezug
Faltungen abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Mi 24.01.2018
Autor: Tipsi

Hallo Gono,
ich hatte nicht gedacht, dass der Abstatz auch als Voraussetzung für die Proposition mit einzubeziehen ist. Ich dachte, das wäre eine allgemeine Nebenbemerkung, wie man die Faltung auffassen kann.
Aber bei den Voraussetzungen für die Proposition steht die Eigenschaft ja nicht dabei.

Nun gut, dann war's im Skript wsl. so gemeint, wie du geschrieben hast und die Frage wäre geklärt. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]