Faltung zweier Funktionen < Signaltheorie < Ingenieurwiss. < Vorhilfe
|
Aufgabe | Gegeben seien die Funktionen
[mm] f_1(t) = \left\{\begin{matrix} \cos \left(\frac{\pi}{4}t\right) & \mbox{für } 0 \le t < 2 \\
0 & \mbox{sonst} \end{matrix}\right [/mm]
[mm] f_2(t) = \left\{\begin{matrix} \frac{1}{2}t & \mbox{für } 0 \le t < 2 \\
0 & \mbox{sonst} \end{matrix}\right [/mm]
Bestimmen Sie die Faltungsfunktion [mm] f_3=f_1 \* f_2[/mm] durch Anwendung einer Integraldefinition der Faltung. Dabei sind unbedingt die jeweiligen Integrationsgrenzen durch Skizzen zu erklären und auch die jeweiligen Stammfunktionen (mit TR) anzugeben. |
Hallo!
Ich habe große Probleme mit dem Finden der Integrationsgrenzen. Das Faltungsintegral ist mir bekannt und ich verstehe es auch, nur bei diesen Grenzen tue ich mich sehr schwer. Von anderen Mit-Studenten ließ ich mir sagen, dass man in diesem Fall 3 Fälle zu unterscheiden hätte, doch mir fehlt da jeglicher Ansatz.
Ich benötige keine komplette Lösung, da ich das schon von allein lösen möchte, doch für einen Ansatz zum Lösen der Aufgabe wäre ich wirklich sehr dankbar!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dank und Viele Grüße,
Julian_NaTe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:39 Mo 08.02.2010 | Autor: | Infinit |
Hallo Julian_NaTe,
herzlich willkommen hier bei der Vorhilfe.
Um die Faltung zu verstehen, sollte man das Faltungsintegral verstehen, denn sonst kommt man auch mit den Grenzen nicht weiter. Allgemein gilt für das Ergebnis der Faltung g(t) der Ausdruck
$$ g(t) = [mm] \int_{\tau = - \infty}^{\infty} f_1(\tau) f_2(t-\tau) \, d\tau\, [/mm] . $$
Die Funktionen werden also mit der neuen Varibalen tau geschrieben, die Größe t ist ein fester Zeitpunkt, für den Du das Ergebnis der Faltung wissen willst. Die Funktion [mm] f_2 (t-\tau) [/mm] entsteht aus der Funktion [mm] f(t) [/mm], indem Du die Variable änderst und mit einem Minuszeichen versiehst. Damit spiegelst Du diese Funktion an der y-Achse und schiebst sie mit wachsendem [mm] t [/mm] auf der [mm]\tau[/mm]-Achse nach rechts.
Bei der Auswertung des Integrals hilft es, wenn die einzelnen Funktionen zeitbegrenzt sind, denn dann kann man mit endlichen Integralgrenzen rechnen.
Zur Auswertung des Integrals musst Du nur die Bereiche berücksichtigen, in denen sich die beiden Funktionen überlappen.
Wenn Du dies nun mal aufzeichnest und die Funktion [mm]f_2(t-\tau)[/mm] Dir betrachtest, so kannst Du diese schreiben als
$$ [mm] f_2(t-\tau) [/mm] = [mm] \bruch{1}{2} (t-\tau) \, {\em fuer}\, [/mm] -2 [mm] \leq \tau [/mm] < 0 [mm] \, [/mm] . $$
Für t = 0 überlappt sich diese Funktion mit der Funktion [mm] f_1 (\tau) [/mm] noch nicht, aber mit wachsendem t wandert diese "gespiegelte Teilgerade" unter dem Cosinus durch. Die damit verbundene Grenze ist als untere Integralgrenze [mm] \tau = 0 [/mm], die obere Integralgrenze hängt von Deinem Parameter t ab, also lautet für diesen ersten Teilbereich zwischen t = 0 und t = 2
das Faltungsintegral
$$ [mm] g_1(t) [/mm] = [mm] \int_{\tau=0}^{\tau=t} \cos(\bruch{\pi \tau}{4}) \cdot \bruch{1}{2} (t-\tau) \, d\tau \, {\em fuer}\, [/mm] 0 [mm] \leq [/mm] t < 2 [mm] \, [/mm] . $$
Für t-Werte größer als 2 wandert die "gespiegelte Teilgerade" wieder aus dem Cosinus raus, die obere Grenze liegt demzufolge bei [mm] \tau = 2 [/mm], die untere bei ?????. Das solltest Du jetzt mal rausbekommen, beachte dabei, über welche Zeitspanne das Signal überhaupt ungleich 0 ist.
Viel Spaß beim Überlegen,
Infinit
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:29 Do 18.02.2010 | Autor: | Wyndorf |
hi,
unter wiki -> Faltung hab ich ein paar applets gefunden:
http://www.getsoft.net/fouriertrans/animationen/animation04.html
die grenzen beginnen an dem punkt, wo sich die beiden funktionen berühren.
hilfreich finde ich die diskrete faltung, falls du matlab hast oder sowas.
a=[1 1 1] gefaltet mit b=[1 1 1] ist:
c=[1 2 3 2 1]
im applet ist das auch sehr schön zu sehen.
mfg
|
|
|
|