matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFaltung von Stetigen Dichtefkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Faltung von Stetigen Dichtefkt
Faltung von Stetigen Dichtefkt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung von Stetigen Dichtefkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Do 15.04.2010
Autor: jaruleking

Aufgabe
Hi, ich habe die folgenden Dichtefkt. gegeben:

[mm] f_X(x)=\lambda*e^{-\lambda* x} [/mm] für x>0 und 0 sonst

[mm] f_Y(y)=\lambda^2*y*e^{-\lambda* y} [/mm] für y>0  und 0 sonst.

So, jetzt will ich die gemeinsame Dichte von X+Y bestimmen.

So,

wir kennen ja jetzt die gleichung [mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx}, [/mm] also setzen wir erstmal die Fkt. ein:

[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{\lambda*e^{-\lambda* x}\lambda^2*(z-x)*e^{-\lambda* (z-x)}dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{\lambda^3*(z-x)e^{-\lambda*z}dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{(\lambda^3*z*e^{-\lambda*z} - \lambda^3*x*e^{-\lambda*z})dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{\lambda^3*z*e^{-\lambda*z} dx} [/mm] - [mm] \integral_{-\infty}^{\infty}{\lambda^3*x*e^{-\lambda*z}dx} [/mm]


Hi, so jetzt kommen meine Fragen:

a) ich weiß, dass ich schon nach dem ersten Schritt, also nach der Formel, als ich die Fkten eingesetzt habe, hätte die Grenzen einsetzen müssen. Ich weiß gerade nur nicht, was ich dort einsetzen muss.

b) wie gehts jetzt weiter??

Wäre echt nett, wenn mir wer helfen könnte.

Grüße

        
Bezug
Faltung von Stetigen Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 15.04.2010
Autor: Marc

Hallo jaruleking,


> a) ich weiß, dass ich schon nach dem ersten Schritt, also
> nach der Formel, als ich die Fkten eingesetzt habe, hätte
> die Grenzen einsetzen müssen. Ich weiß gerade nur nicht,
> was ich dort einsetzen muss.

Für [mm] $x\le0$ [/mm] verschwindet ja [mm] $f_X$ [/mm] und damit der Integrand, also kannst als untere Grenze 0 wählen.
Für [mm] $z-x\le0\ \gdw\ x\ge [/mm] z$ verschwindet [mm] $f_Y$, [/mm] also kannst du als obere Grenze z nehmen.

> b) wie gehts jetzt weiter??

Beachte, dass die Integrationsvariable $x$ ist und $z$ und [mm] $\lambda$ [/mm] bzgl. der Integration Konstanten sind. Damit dürfte es (auch ohne deine letzten Umformungsschritte) möglich sein, das Integral zu berechnen.

Viele Grüße,
Marc

Bezug
                
Bezug
Faltung von Stetigen Dichtefkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Do 15.04.2010
Autor: jaruleking

Ist das dann so richtig, auch wenn ich meinen letzen Schritt mitnehme:

[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx} [/mm]

= [mm] \integral_{z}^{0}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx} [/mm] $ - $ [mm] \integral_{z}^{0}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx} [/mm]

= [mm] [\lambda^3 z*x*e^{-\lambda\cdot{}z}] [/mm] - [mm] [\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}] [/mm]

= [mm] -\lambda^3 z^2*e^{-\lambda\cdot{}z} [/mm] + [mm] \bruch{z^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z} [/mm]

=> [mm] f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}z^2\bruch{3}{2} [/mm]

ist das so richtig?? oder fehler vorhanden? ...

Bezug
                        
Bezug
Faltung von Stetigen Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Do 15.04.2010
Autor: steppenhahn

Hallo!

> Ist das dann so richtig, auch wenn ich meinen letzen
> Schritt mitnehme:
>  
> [mm]f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx}[/mm]
>
> =
> [mm]\integral_{z}^{0}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx}[/mm]
>  [mm]-[/mm]
> [mm]\integral_{z}^{0}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx}[/mm]

Wieso gehen deine Integrale von z bis 0 ?
Sie müssen doch von 0 bis z gehen!

> = [mm][\lambda^3 z*x*e^{-\lambda\cdot{}z}][/mm] -
> [mm][\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}][/mm]
>  
> = [mm]-\lambda^3 z^2*e^{-\lambda\cdot{}z}[/mm] +
> [mm]\bruch{z^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}[/mm]

> => [mm]f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}z^2\bruch{3}{2}[/mm]

Hier hast du dich verrechnet.

-------

Was noch fehlt: Was passiert für z < 0? Das musst du alles angeben.

Grüße,
Stefan

Bezug
                                
Bezug
Faltung von Stetigen Dichtefkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Fr 16.04.2010
Autor: jaruleking

Hi nochmal.

dann müsste es ja so sein:

[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx} [/mm]

= [mm] \integral_{0}^{z}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx} [/mm] - [mm] \integral_{0}^{z}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx} [/mm]

= [mm] [\lambda^3 z\cdot{}x\cdot{}e^{-\lambda\cdot{}z}] [/mm] - [mm] [\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}] [/mm]

[mm] f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}\bruch{z^2}{2} [/mm]

und für z<0 haben wir sicherlich 0. richtig so??

Was ich bei diesen typ von aufgaben nicht verstehe: wie bestimmt man die integrationsgrenzen?? ich hatte hier letztens auch schon mal ein beispiel, aber auch dort habe ich nicht so wirklich verstanden, wie man auf die integrationsgrenzen kam.

kann mir das vielleicht nochmal wer erklären??

Grüße


Bezug
                                        
Bezug
Faltung von Stetigen Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 16.04.2010
Autor: steppenhahn

Hallo!

> Hi nochmal.
>  
> dann müsste es ja so sein:
>  
> [mm]f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx}[/mm]
>
> =
> [mm]\integral_{0}^{z}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx}[/mm]
> -
> [mm]\integral_{0}^{z}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx}[/mm]
>
> = [mm][\lambda^3 z\cdot{}x\cdot{}e^{-\lambda\cdot{}z}][/mm] -
> [mm][\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}][/mm]
>
> [mm]f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}\bruch{z^2}{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>
> und für z<0 haben wir sicherlich 0. richtig so??

Genau. Beides ist richtig [ok] :-).


> Was ich bei diesen typ von aufgaben nicht verstehe: wie
> bestimmt man die integrationsgrenzen?? ich hatte hier
> letztens auch schon mal ein beispiel, aber auch dort habe
> ich nicht so wirklich verstanden, wie man auf die
> integrationsgrenzen kam.
>  
> kann mir das vielleicht nochmal wer erklären??

Die Integrationsgrenzen entstehen aufgrund deiner Dichtefunktionen.
Diese lauteten:

$ f_X(x)=\lambda\cdot{}e^{-\lambda\cdot{} x}*1_{\{x>0\}} = \begin{cases}\lambda\cdot{}e^{-\lambda\cdot{} x},\quad\mbox{ falls } x > 0\\ 0, \quad\quad\quad\quad\mbox{ falls } x\le 0 \end{cases}$

$ f_Y(y)=\lambda^2\cdot{}y\cdot{}e^{-\lambda\cdot{} y}*1_{\{y>0\}} = \begin{cases}\lambda^2\cdot{}y\cdot{}e^{-\lambda\cdot{} y} ,\quad\mbox{ falls } y > 0\\ 0, \quad\quad\quad\quad\quad\quad\mbox{ falls } y\le 0 \end{cases}$.

Nun erfolgt die Bestimmung deiner neuen Dichtefunktion:

$f_{X+Y}(z) = \int_{-\infty}^{\infty}f_{X}(x)*f_{Y}(z-x) dx$

$= \int_{-\infty}^{\infty}\Big(\lambda\cdot{}e^{-\lambda\cdot{} x}*1_{\{x>0\}}\Big)*\Big(\lambda^2\cdot{}(z-x)\cdot{}e^{-\lambda\cdot{} (z-x)}*1_{\{(z-x)>0\}}\Big) dx$.

Bis zu dieser Stelle kannst du das alles so hinschreiben.
Nun musst du aber die Indikatorfunktionen beachten!

Wenn die Indikatorfunktionen Null werden, wird der gesamte Integrand Null. Wir müssen also nicht über diese x integrieren, bei welchen die Indikatorfunktionen Null werden.
Die erste Indikatorfunktion sagt: $x > 0$.
Die zweite sagt: $z-x>0 \Leftrightarrow x < z$.

Das heißt: Nur falls $0 < x < z$, ist der Integrand ungleich 0.
Indem wir jetzt also nur von 0 bis z integrieren, können wir die Indikatorfunktionen entfernen, weil sie genau in diesem Bereich sowieso immer 1 sind.

Der nächste Schritt ist also:

$= \int_{0}^{z}\Big(\lambda\cdot{}e^{-\lambda\cdot{} x}}\Big)*\Big(\lambda^2\cdot{}(z-x)\cdot{}e^{-\lambda\cdot{} (z-x)}\Big) dx$.

Grüße,
Stefan

Bezug
                                                
Bezug
Faltung von Stetigen Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Fr 16.04.2010
Autor: jaruleking

SUPER VIELEN DANK MAL WIEDER FÜR DIE AUSFÜRHLICHE ERKLÄRUNG.

Grüße!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]