matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFaltung von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Fourier-Transformation" - Faltung von Funktionen
Faltung von Funktionen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 01.12.2009
Autor: Sierra

Aufgabe
Berechne die Faltung der Funktionen [mm] (\lambda,\mu>0) [/mm]
[mm] f(x)=\bruch{1}{\lambda}*e^{-\lambda*x} [/mm] für x>0, 0 sonst
[mm] g(x)=\bruch{1}{\mu}*e^{-\mu*x} [/mm] für x>0, 0 sonst
direkt und mit Hilfe der Fourier-Transformation


Hallo,

habe noch große Schwierigkeiten, was das Thema Fouriertransformationen betrifft. Hier erstmal meine herangehensweise:
zunächst die Faltung ("*" entspricht der Faltung):
(f*g)(y)= [mm] \integral_{0}^{\infty}{f(x)*g(y-x) dx} [/mm]
[mm] =\integral_{0}^{\infty}{\bruch{1}{\lambda}*e^{-\lambda*x}*\bruch{1}{\mu}*e^{-\mu*(y-x)} dx} [/mm]
[mm] =\bruch{1}{\lambda*\mu}*\integral_{0}^{\infty}e^{-\mu*y+x(\mu-\lambda)}dx [/mm]
[mm] =\bruch{1}{\lambda\mu(\mu-\lambda)}*[e^{-\mu*y+x(\mu-\lambda)}] [/mm] wobei noch die Grenzen einzusetzen sind. Hier ist auch schon mein erstes Problem, für [mm] \infty [/mm] müsste ich doch eigentlich eine Fallunterscheidung machen, je nachdem, ob [mm] \mu>\lambda [/mm] oder andersrum?

Ist es außerdem richtig, dass ich davon ausgehe, dass ich (f*g)(y) für [mm] x\le [/mm] 0 nicht berechnen brauch, da doch 0 rauskommt, oder ?

Gruß Sierra

        
Bezug
Faltung von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Di 01.12.2009
Autor: MatthiasKr

Hallo,
> Berechne die Faltung der Funktionen [mm](\lambda,\mu>0)[/mm]
>  [mm]f(x)=\bruch{1}{\lambda}*e^{-\lambda*x}[/mm] für x>0, 0 sonst
>  [mm]g(x)=\bruch{1}{\mu}*e^{-\mu*x}[/mm] für x>0, 0 sonst
>  direkt und mit Hilfe der Fourier-Transformation
>  
>
> Hallo,
>  
> habe noch große Schwierigkeiten, was das Thema
> Fouriertransformationen betrifft. Hier erstmal meine
> herangehensweise:
>  zunächst die Faltung ("*" entspricht der Faltung):
>  (f*g)(y)= [mm]\integral_{0}^{\infty}{f(x)*g(y-x) dx}[/mm]
>  

Schau dir dieses integral genauer an: y ist fest und $g(x)=0$ fuer [mm] $x\le [/mm] 0$. Also ist $g(y-x)=0$ fuer [mm] $y-x\le [/mm] 0$. du brauchst also das integral nicht bis [mm] \infty [/mm] auszuwerten sondern nur bis ...?

> [mm]=\integral_{0}^{\infty}{\bruch{1}{\lambda}*e^{-\lambda*x}*\bruch{1}{\mu}*e^{-\mu*(y-x)} dx}[/mm]
>  
> [mm]=\bruch{1}{\lambda*\mu}*\integral_{0}^{\infty}e^{-\mu*y+x(\mu-\lambda)}dx[/mm]
>  
> [mm]=\bruch{1}{\lambda\mu(\mu-\lambda)}*[e^{-\mu*y+x(\mu-\lambda)}][/mm]
> wobei noch die Grenzen einzusetzen sind. Hier ist auch
> schon mein erstes Problem, für [mm]\infty[/mm] müsste ich doch
> eigentlich eine Fallunterscheidung machen, je nachdem, ob
> [mm]\mu>\lambda[/mm] oder andersrum?
>  

diese unterscheidung solltest du nicht benoetigen, wenn du meinen tip oben umsetzt.

> Ist es außerdem richtig, dass ich davon ausgehe, dass ich
> (f*g)(y) für [mm]x\le[/mm] 0 nicht berechnen brauch, da doch 0
> rauskommt, oder ?

wegen $f(x)=0$ fuer [mm] $x\le [/mm] 0$, richtig. [daumenhoch]

gruss
Matthias


Bezug
                
Bezug
Faltung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Mo 07.12.2009
Autor: Sierra

Wenn auch ziemlich verspätet, vielen Dank für deine Antwort !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]