matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieFaltung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Faltung
Faltung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 So 13.07.2014
Autor: James90

Hi!

Zu zeigen: [mm] $X,Y\sim\mathcal [/mm] N(0,1)$ unabhängig. Daraus folgt: [mm] $X+Y\sim\mathcal [/mm] N(0,2)$.

Das würde ich gerne über die Faltung zeigen.

Zeigen will ich also: [mm] \frac{\phi_{0,1}*\phi_{0,1}(t)}{\phi_{0,2}(t)}=1. [/mm]

Ich habe bereits: [mm] \frac{\phi_{0,1}*\phi_{0,1}(t)}{\phi_{0,2}(t)}=\frac{2}{1*1}\frac{1}{\sqrt{2\pi}}\int_{\IR}\exp(\frac{t^2}{2*2^2}-\frac{s^2}{2*1^2}-\frac{(t-s)^2}{2*1^2})ds [/mm]

[mm] (\sigma_1^2 [/mm] und [mm] \sigma_2^2 [/mm] sind 1, also nicht wundern wegen den Einsen)

Kurz gefasst: [mm] \frac{1}{\sqrt{2\pi}}\int_{\IR}\exp(\frac{t^2}{4}-s^2-(t-s)^2)ds [/mm]

Wie zeige ich nun, dass das Eins ist?

Meine Idee wäre zu zeigen: [mm] (\int_{\IR}\exp(\frac{t^2}{4}-s^2-(t-s)^2)ds)^2=2\pi. [/mm]

Bin ich auf dem richtigen Weg?

Vielen Dank!

Viele Grüße, James.

        
Bezug
Faltung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 So 13.07.2014
Autor: Gonozal_IX

Hiho,

> Das würde ich gerne über die Faltung zeigen.

Ok, auch wenn das über die charakteristischen Funktionen tausendmal einfacher geht.

> Zeigen will ich also:
> [mm]\frac{\phi_{0,1}*\phi_{0,1}(t)}{\phi_{0,2}(t)}=1.[/mm]
>  
> Ich habe bereits:
> [mm]\frac{\phi_{0,1}*\phi_{0,1}(t)}{\phi_{0,2}(t)}=\frac{2}{1*1}\frac{1}{\sqrt{2\pi}}\int_{\IR}\exp(\frac{t^2}{2*2^2}-\frac{s^2}{2*1^2}-\frac{(t-s)^2}{2*1^2})ds[/mm]

Schreibe das mal bitte sauber in einzelnen Schritten auf, damit man das besser nachvollziehen kann, was du da machst.
Ich glaube es zwar zu wissen, was du gemacht hast, aber so ist die Fehlersuche einfacher :-)

> Kurz gefasst:
> [mm]\frac{1}{\sqrt{2\pi}}\int_{\IR}\exp(\frac{t^2}{4}-s^2-(t-s)^2)ds[/mm]

Nein, selbst wenn dein Integral oben stimmt, kannst du doch nicht einfach die 2 vor dem Integral mit einem [mm] \bruch{1}{2} [/mm] im [mm] \exp [/mm] kürzen!

> Meine Idee wäre zu zeigen:
> [mm](\int_{\IR}\exp(\frac{t^2}{4}-s^2-(t-s)^2)ds)^2=2\pi.[/mm]
>  
> Bin ich auf dem richtigen Weg?

Jein. Du brauchst da auch nix quadrieren. Dein Weg dürfte funktionieren, du bekommst den Integranden halt so umgeformt, dass dort eine Dichte einer NV steht, die aufintegriert dann deine gewünschte 1 ergibt.

Gruß,
Gono.

Bezug
                
Bezug
Faltung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Mo 14.07.2014
Autor: James90

Danke Dir Gono. Ich hab es raus. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]