matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionFalsche Induktionsbeweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Falsche Induktionsbeweise
Falsche Induktionsbeweise < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Falsche Induktionsbeweise: Ideenkorrektur
Status: (Frage) beantwortet Status 
Datum: 13:19 Sa 22.10.2011
Autor: Orchis

Aufgabe
http://www.mathe-schule.de/Mathe/beweis_mathe.html
(Der vierte Beweis von unten: "Alle natürlichen Zahlen sind gleich")

Liebe Hobby-Mathematiker,
ich habe gerade angefangen zu studieren und versuche mich nun ein wenig in die Materie der vollständigen Induktion einzudenken. Dazu habe ich mir einen falschen Induktionsbeweis zum Thema "Alle natürlichen Zahlen sind gleich" angesehen und hoffe, dass ich ihn so richtig verstanden habe:

Der Induktionsanfang ist offensichtlich richtig, denn bestimmt man das Maximum von 1 und jeder beliebigen anderen Zahl x [mm] \in \IN [/mm] > 0, so würde etwas größeres als 1 für das Maximum ausgegeben werden. Somit ergibt sich 1 als das Maximum nur für den Fall, dass a=b=1 gilt. (Eigentlich trivial, aber man lernt ja noch :D)

Kommen wir nun also zum Induktionsschritt: Hier liegt meiner Meinung nach der Fehler darin, dass max(a-1,b-1) nur für den Fall n>=1 definiert ist: Betrachten wir max(1,1)=2 (max(a,b)=n+1), dann setzt man a-1=1-1=0 und b-1=1-1=0. Dann gilt max(0,0)=0, doch 0 [mm] \not\in \IN [/mm]

Es wäre toll, wenn man mir einen Hinweis geben könnte, ob ich da den richtigen Gedanken hatte, oder einen Tipp, falls dem nicht so ist. Vielen Dank im Voraus schon mal.
Viele Grüße
Orchis

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Falsche Induktionsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Sa 22.10.2011
Autor: Schadowmaster

Nun, wie ich das sehe ist der Beweis formal richtig, aber es wird nicht das gezeigt was man zeigen möchte.^^

Das Hauptproblem bei dieser Induktion ist, dass max(a,b) betrachtet wird, also du hast zwei Variablen.
Es wird aber eine Induktion über n gemacht, nur eine Variable.
Das heißt also was da gezeigt wurde ist:
Wenn a=b so ist auch max(a,b) = a = b und somit also a=b.
Wollte man hier eine ordentliche Induktion machen müsste man etwas in der Art sagen wie:
"Induktionsvoraussetzung: Es sei die Aussage für ein $a [mm] \in \IN$ [/mm] und für alle $b [mm] \in \IN$ [/mm] mit $b [mm] \leq [/mm] a$ gezeigt.
Induktionsschluss: $a [mm] \mapsto [/mm] a+1$"

Das würde dann natürlich schiefgehen.^^

Das Problem, dass im Induktionsschluss nur $n [mm] \geq [/mm] 2$ betrachtet wird ist allerdings kein wirkliches Problem, denn 1 wurde ja im Induktionsanfang erledigt, somit darf der Schluss ruhig bei der 2 anfangen.

lg

Schadow

Bezug
                
Bezug
Falsche Induktionsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Sa 22.10.2011
Autor: Orchis

Vielen Dank, jetzt wird mir so einiges klar. Das Problem habe ich von der falschen Seite beleuchtet :D.
Lg Orchis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]