matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFaktorringe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Faktorringe
Faktorringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorringe: Integritätsring <=> Primideal
Status: (Frage) beantwortet Status 
Datum: 14:37 Mo 31.05.2010
Autor: oeli1985

Aufgabe
Wann ist ein Faktorring im Allgemeinen ein Integritätsring?

bzw.

Beweisen Sie die Behauptung: [mm] R_{/I} [/mm] ist Integritätsring [mm] \gdw [/mm] I [mm] \subset [/mm] R ist Primideal

Hallo zusammen,
ich beschäftige mich gerade mit der oben beschriebenen Behauptung. Der Beweis im Spezialfall der Restklassenringe ist auch kein Problem, aber in diesem Fall komme ich einfach nicht voran.

Ich denke ich zeige erstmal das bißchen, was ich habe und hoffe ihr könnt mir dann weiterhelfen.

"<="
sei [mm] R_{/I} [/mm] die Menge aller Nebenklassen des Ideal I in R

z.zg.: [mm] \exists [/mm] kein xI [mm] \in R_{/I} [/mm] \ [mm] \{0\} [/mm] : [mm] \exists [/mm] yI [mm] \in R_{/I} [/mm] \ [mm] \{0\} [/mm] : xIyI=0

sei R ein Ring und I [mm] \subset [/mm] R ist ein Primideal [mm] \Rightarrow [(\forall [/mm] x,y [mm] \in [/mm] R:xy [mm] \in [/mm] I) [mm] \Rightarrow [/mm] x [mm] \in [/mm] I oder y [mm] \in [/mm] I] und I [mm] \not= [/mm] R

xIyI=0 [mm] \Rightarrow [/mm] xyI=0 [mm] \Rightarrow [/mm] xy=0 [mm] \Rightarrow [/mm] ???

An dieser Stelle liegt nun mein Problem. Natürlich weiss ich, dass ich jetzt folgern muss, dass x=0 oder y=0 und ich weiss auch, dass ich aus der Voraussetzung folgern kann, dass xy [mm] \in [/mm] I und dann x [mm] \in [/mm] I oder y [mm] \in [/mm] I.

ABER woher weiss ich denn nun, dass wirklich kein Nullteiler existiert und somit x=0 oder y=0 sein muss?

Bin für jede Hilfe dankbar. Grüße,
Patrick

P.S.: Darf ich eigentlich anstelle von xI auch [x] im Sinne der Restklassen schreiben, weil [mm] R_{/I} [/mm] isomorph zu [mm] \IZ /_{m\IZ} [/mm] ist?

        
Bezug
Faktorringe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mo 31.05.2010
Autor: felixf

Moin Patrick!

> Wann ist ein Faktorring im Allgemeinen ein
> Integritätsring?
>  
> bzw.
>  
> Beweisen Sie die Behauptung: [mm]R_{/I}[/mm] ist Integritätsring
> [mm]\gdw[/mm] I [mm]\subset[/mm] R ist Primideal
>
>  Hallo zusammen,
>  ich beschäftige mich gerade mit der oben beschriebenen
> Behauptung. Der Beweis im Spezialfall der Restklassenringe
> ist auch kein Problem, aber in diesem Fall komme ich
> einfach nicht voran.
>  
> Ich denke ich zeige erstmal das bißchen, was ich habe und
> hoffe ihr könnt mir dann weiterhelfen.
>  
> "<="
>  sei [mm]R_{/I}[/mm] die Menge aller Nebenklassen des Ideal I in R
>  
> z.zg.: [mm]\exists[/mm] kein xI [mm]\in R_{/I}[/mm] \ [mm]\{0\}[/mm] : [mm]\exists[/mm] yI [mm]\in R_{/I}[/mm]
> \ [mm]\{0\}[/mm] : xIyI=0

[ok]

> sei R ein Ring und I [mm]\subset[/mm] R ist ein Primideal
> [mm]\Rightarrow [(\forall[/mm] x,y [mm]\in[/mm] R:xy [mm]\in[/mm] I) [mm]\Rightarrow[/mm] x [mm]\in[/mm]
> I oder y [mm]\in[/mm] I] und I [mm]\not=[/mm] R

Das stimmt doch gar nicht. Du meinst $I [mm] \neq [/mm] R [mm] \wedge \forall [/mm] x, y [mm] \in [/mm] R : (x y [mm] \in [/mm] I [mm] \Rightarrow [/mm] x [mm] \in [/mm] I [mm] \text{ oder } [/mm] y [mm] \in [/mm] I)$

(Wenn du den Unterschied zu dem nicht siehst, was du schriebst, denk nochmal genau ueber die Klammerung nach.)

> xIyI=0 [mm]\Rightarrow[/mm] xyI=0 [mm]\Rightarrow[/mm] xy=0 [mm]\Rightarrow[/mm] ???

Quark. Aus $xyI = 0$ folgt $xy [mm] \in [/mm] I$. (Bzw. es ist aequivalent dazu.)

> An dieser Stelle liegt nun mein Problem. Natürlich weiss
> ich, dass ich jetzt folgern muss, dass x=0 oder y=0 und ich

Nein! Du musst folgern: $x I = 0$ oder $y I = 0$, also aequivalent: $x [mm] \in [/mm] I$ oder $y [mm] \in [/mm] I$.

>  P.S.: Darf ich eigentlich anstelle von xI auch [x] im
> Sinne der Restklassen schreiben,

Ja.

> weil [mm]R_{/I}[/mm] isomorph zu [mm]\IZ /_{m\IZ}[/mm] ist?

Das ist hochgradig falsch, ausser fuer ganz, ganz wenige Ringe.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]