Faktorringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:53 So 18.01.2015 | Autor: | xtraxtra |
Ich habe leider so meine Probleme mir unter Faktorringen etwas vorzustellen. Ich weiß dass das der Äquivalenzklassenbildung der Gruppen entspricht.
Aber der Vorstellung scheiterts dann:
Ich soll die Elemente folgender Faktorringe bestimmen (ich schreib dahinter gleich einmal meine vermmuteten Lösungen):
[mm] \IZ/2\IZ [/mm] = {0,1}
[mm] \IZ[X]/(2) [/mm] = {0,1}
[mm] \IQ[X]/(X) [/mm] = [mm] \IQ
[/mm]
[mm] \IQ[X]/(X²+1) [/mm] = {f [mm] \in \IQ[X] [/mm] | aX+b , a,b [mm] \in \IQ [/mm] }
[mm] \IZ[i]/(2+3i) [/mm] hier habe ich leider keine Idee...
Wäre super wenn mir jmd meine Lösungen bestätigen/berichtigen könnte und bei den letzten Elementen hälfen könnte
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:19 So 18.01.2015 | Autor: | xtraxtra |
Ich habe nochmal drüber nachgedacht: [mm] \IZ[X]/(2) [/mm] wird wahrscheinlich {0,1,X,X+1,X²,X²+X,X²+1,X²+X+1,....} sein.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:31 So 18.01.2015 | Autor: | hippias |
Die Elemente des Faktorringes zu bestimmen, ist ein mir etwas unklarer Arbeitsauftrag. Ich werde ein Representantensystem bestimmen.
Zuerst aber: Die Elemente der Faktorstruktur sind Mengen. Daher sind alle Deine Loesungen falsch, obwohl Du zumeist das richtige zu meinen scheinst. Verwechsle im Folgenden nicht das Ideal $(X+1)$ mit dem eingeklammerten Polynom $(X+1)$.
Beispielhaft bearbeite ich [mm] $\IQ[X]/(X+1)$. [/mm] Nach Definition ist [mm] $\IQ[X]/(X+1)= \{f+(X+1)|f\in \IQ[X]\}$, [/mm] wobei wieder nach Definition $f+(X+1)= [mm] \{f+g(X+1)|g\in \IQ[X]\}$ [/mm] die Menge der Polynome, die als Summe von $f$ und einem Vielfachen von $X+1$ gebildet sind.
Diese Beschreibung von [mm] $\IQ[X]/(X+1)$ [/mm] ist noch etwas unuebersichtlich. Daher versuche ich einfache Polynome zu finden, die alle Restklassen beschreiben. Dazu sei [mm] $f\in \IQ[X]$. [/mm] Dann existieren [mm] $g,r\in \IQ[X]$ [/mm] mit $f= g(X+1)+r$, wobei [mm] $r\in \IQ$ [/mm] (Division mit Rest). Also sehe ich, dass es zu jedem [mm] $f\in\IQ[X]$ [/mm] ein [mm] $r\in \IQ$ [/mm] gibt, sodass $f$ in der Restklasse von $r$ liegt.
Man sagt die Menge [mm] $\IQ$ [/mm] bildet ein Representantensystem der Aequivalenzrelation.
Also [mm] $\IQ[X]/(X+1)= \{r+(X+1)|r\in \IQ\}$. [/mm] Man koennte aber auch schreiben [mm] $\IQ[X]/(X+1)\cong \IQ$ [/mm] mit dem Isomorphismus [mm] $\phi: \IQ[X]/(X+1)\to \IQ$, [/mm] der die Restklasse $r+(X+1)$ auf die Zahl $r$ abbildet. Dass das Representantensystem eine isomorphe Struktur traegt, muss nicht der Fall sein, sondern ist eher ein Gluecksfall.
|
|
|
|