matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFaktorisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Faktorisierung
Faktorisierung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mo 15.09.2008
Autor: generation...x

Meine Kenntnisse in Algebra sind etwas verschüttet, deshalb die Frage:

Angenommen, man hat eine freie Gruppe vom Rang>1 und kennt die Menge der Erzeuger. Gibt es dann ein allgemeines Verfahren, ein beliebiges Gruppenelement zu faktorisieren? Es muss ja nach Voraussetzung eine eindeutige Zerlegung geben.

        
Bezug
Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Mo 15.09.2008
Autor: felixf

Moin

> Meine Kenntnisse in Algebra sind etwas verschüttet, deshalb
> die Frage:
>  
> Angenommen, man hat eine freie Gruppe vom Rang>1 und kennt
> die Menge der Erzeuger. Gibt es dann ein allgemeines
> Verfahren, ein beliebiges Gruppenelement zu faktorisieren?
> Es muss ja nach Voraussetzung eine eindeutige Zerlegung
> geben.

Nein, das gibt es nicht. Fuer spezielle freie Gruppen gibt es spezielle Verfahren. Hast du eine spezielle freie Gruppe im Kopf?

LG Felix


Bezug
                
Bezug
Faktorisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Mo 15.09.2008
Autor: generation...x

Es handelt sich um eine Gruppe quadratischer ([mm]n \times n[/mm])-Matrizen, die durch bestimmte, zeilenvertauschende Elementarmatrizen (allerdings nicht alle zeilenvertauschenden, sondern nur ein kleiner Teil davon - die Anzahl ist linear in n) erzeugt wird.

Das Problem ist, dass man [mm]2^{\bruch{n}{2}}[/mm] in Frage kommende Matrizen hat, die man nun faktorisieren muss, da man herausfinden will, welche dieser Faktorisierungen die kürzeste ist.

Bezug
                        
Bezug
Faktorisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 Mo 15.09.2008
Autor: felixf

Hallo

> Es handelt sich um eine Gruppe quadratischer ([mm]n \times n[/mm])-Matrizen,
> die durch bestimmte, zeilenvertauschende Elementarmatrizen
> (allerdings nicht alle zeilenvertauschenden, sondern nur
> ein kleiner Teil davon - die Anzahl ist linear in n)
> erzeugt wird.

Das hoert sich allerdings nach einer hochgradig nicht-freien Gruppe an? Wenn man so eine Vertauschung doppelt ausfuehrt, erhaelt man schliesslich wieder die Identitaet.

> Das Problem ist, dass man [mm]2^{\bruch{n}{2}}[/mm] in Frage
> kommende Matrizen hat, die man nun faktorisieren muss, da
> man herausfinden will, welche dieser Faktorisierungen die
> kürzeste ist.

Wenn die Gruppe frei waere gaebe es immer eine eindeutige kuerzeste Faktorisierung, die man aus einer beliebigen ganz einfach erhalten kann, indem man alle Produkte der Form $x [mm] x^{-1}$ [/mm] bzw. [mm] $x^{-1} [/mm] x$ daraus entfernt.

Insofern verstehe ich nicht ganz was das jetzt mit freien Gruppen zu tun hat?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]