Faktorisieren < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | Factorise: [mm] 6x^2+11x-10 [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Ich bin momentan in Neuseeland für ein Auslandsjahr und die Examen stehen an. Ich verstehe es nie wie meine Mathelehrerin hier mir das erklärt die gibt mir immer einfach die Lösungen was auf Dauer nicht gerade sinnvoll ist.
Ich weiß noch von Deutschland das man die Binomoischeformel rückwärts machen sollte oder einen gemeinsamen Faktor finden.
Bin jetzt aber ziemlich ratlos da ja kein gemeinsamer Faktor vorliegt.
Also bleibt noch dass ich die Binomischeformel rückwärts machen kann.
Ich komm aber einfach nicht drauf wie das dann funktionieren soll da die Lösung (3x-2)(2x+5) sein sollte.
Bitte helft mir ich weiß es is ein einfaches Thema aber mir geht momentan einfach kein Licht auf.
Liebe Grüße Marielena
|
|
|
|
moin Maryvan,
Es gibt ein paar Tricks für solche Faktorisierungen, falls man weiß (oder hofft^^), dass alle auftretenden Zahlen ganzzahlig sind.
Nehmen wir also an es gibt, $a,b,c,d [mm] \in \IZ$ [/mm] mit
[mm] $6x^2 [/mm] + 11x - 10 = (ax + b)(cx + d)$
Nun wird die rechte Seite ausmultipliziert:
[mm] $6x^2 [/mm] + 11x - 10 = [mm] (ac)x^2 [/mm] + (ad + bc)x + bd$
Wie du siehst habe ich die rechte Seite bereits nach Potenzen von x sortiert.
Jetzt kommt nämlich ein Koeffizientenvergleich:
6 = ac
11 = ad + bc
-10 = bd
Gucken wir uns nur mal die ersten beiden Gleichungen an:
6 = 2*3 = (-2)*(-3) = 1*6 = (-1)*(-6)
10 = 2*(-5) = (-2)*5 = (-1)*10 = 1*(-10)
Wie du siehst gibt es hier nur jeweils 4 Möglichkeiten, also insgesamt nur 16 mögliche Kombinationen.
Zusammen mit der zweiten Gleichung erhält man eben, dass
a = 2, c= 3, b= 5, d = -2 das Problem löst, was schließlich auch zu der gegebenen Lösung führt.
Das ganze sieht jetzt natürlich sehr kompliziert und langwierig aus, da ich es sehr kleinschrittig aufgeschrieben habe.
Allgemein kannst du, wenn du so ein Problem hast, die Teiler der Zahl vor dem [mm] $x^2$ [/mm] und die Teiler der Konstanten durchprobieren und falls es eine ganzzahlige Lösung gibt findest du sie damit.
Das ist zwar ein wenig Arbeit in dieser Form, aber wenn das Polynom normiert ist (also vor dem [mm] $x^2$ [/mm] steht der Vorfaktor 1) ist das eine sehr schöne Methode.
So kann man zum Beispiel sehr schnell sehen, dass gilt:
[mm] $x^2 [/mm] - x - 6 = (x+2)(x-3)$, denn $2*(-3) = -6$ und $2 + (-3) = -1$
Bei solchen normierten Polynomen zweiten Grades kann man auf diese Art eine ganzzahlige Faktorisierung (so sie denn existiert) sehr gut im Kopf finden; bei nicht normierten wie deinem Beispiel braucht es vielleicht ein wenig Übung oder ggf. ein Blatt Papier und einen Stift.
Ich hoffe ich konnte dir helfen.
lg
Schadow
PS: Sollte dir das zu kompliziert sein oder es keine ganzzahligen Lösungen geben gibt es natürlich immer die pq-Formel oder die quadratische Ergänzung.
|
|
|
|