matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFaktorieller Ring, Gegenbsp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Faktorieller Ring, Gegenbsp
Faktorieller Ring, Gegenbsp < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorieller Ring, Gegenbsp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Mo 01.12.2014
Autor: sissile

Aufgabe
Ein Integritätsbereich R heißt faktorieller Ring, wenn die folgenden Bedingungen erfüllt sind:
1. Ist a [mm] \in [/mm] R, [mm] a\not=0, [/mm] a [mm] \not\in R^{\*}, [/mm] so gibt es irreduzible [mm] p_1,..,p_n [/mm] derart, dass [mm] a=p_1*..*p_n [/mm]
2. Ist a [mm] \in [/mm] R, [mm] a\not=0, [/mm] a [mm] \not\in R^{\*} [/mm] und [mm] a=p_1*..*p_n=q_1*..*q_m [/mm] für irreduzible [mm] p_1,..,p_n,q_1,..,q_m \in [/mm] R, so ist n=m und [mm] \exists \sigma \in S_n [/mm] mit der Eigenschaft, dass [mm] p_i [/mm] und [mm] q_{\sigma(i)} [/mm] assoziert sind für 1 [mm] \le [/mm] i [mm] \le [/mm] n

Warum folgt Bedingung 2) nicht aus Bedingung 1) ?
Der Prof meine zu der Frage man solle sich [mm] R=\IZ[i \sqrt{5}] [/mm] anschauen

Hallo zusammen,

Zuerst hab ich ein Gegenbeispiel für Bedingung 2 gefunden:

Man kann 6 z.B darstellen als:
6=2*3=(1+i [mm] \sqrt{5})*(1-i \sqrt{5}) [/mm]

2 teilt nicht (1+ i [mm] \sqrt{5}) [/mm] und 2 teilt nicht (1- i [mm] \sqrt{5}): [/mm]
Denn angenommen 2 teilt (1+i [mm] \sqrt{5}): \exists [/mm] x [mm] \in \IZ[i \sqrt{5}]: [/mm] 2x = 1 + i [mm] \sqrt{5} \gdw [/mm] 2(a+ [mm] i\sqrt{5}b)=1+i\sqrt{5} \gdw [/mm] 2a+ [mm] i\sqrt{5}2b=1+i\sqrt{5} [/mm]
-> 2a=1 -> a [mm] \not\in \IZ [/mm] -> Widerspruch
Analog (1- i [mm] \sqrt{5}) [/mm]

(1+ i [mm] \sqrt{5}) [/mm] und (1- i [mm] \sqrt{5}) [/mm] teilen 2 nicht:
Ang. (1+ i [mm] \sqrt{5}) [/mm] teilt [mm] 2:\exists [/mm] x [mm] \in \IZ[i \sqrt{5}]:(1 [/mm] + i [mm] \sqrt{5})x [/mm] =2
[mm] \gdw [/mm] (1 + i [mm] \sqrt{5})(a+i \sqrt{5} [/mm] b) =2 [mm] \gdw a-5b+i\sqrt{5}*(b+a)=2 [/mm]
-> a-5b=2, b+a=0, Lösungen in [mm] \IQ [/mm] -> Wid
Analog für (1- i [mm] \sqrt{5}) [/mm]

[mm] \Rightarrow [/mm] 2 weder zu (1+ i [mm] \sqrt{5}) [/mm] noch zu (1- i [mm] \sqrt{5}) [/mm] assoziert.

-) 2 ist irreduzibel:
[mm] 2\not=0 [/mm]
2 [mm] \not\in \IZ^{\*} [/mm] [i [mm] \sqrt{5}]=\{ z \in \IZ[i \sqrt{5}]| N(z)=1\} [/mm]
2=z*w mit z,w [mm] \in \IZ[i \sqrt{5}] [/mm]
-> [mm] 4=N(2)=N(zw)=N(z)N(w)=(a^2+5b^2)*(x^2+5y^2) [/mm]
4= [mm] (a^2+5b^2)*(x^2+5y^2) [/mm]
Da N:(a+i [mm] \sqrt{5} [/mm] b) [mm] \mapsto (a^2 +5b^2) [/mm]
müssen die Bilder der N-Funktion natürliche Zahlen sein

Fälle:
[mm] I:(a^2+5b^2)=1,(x^2+5y^2)=4 [/mm]
[mm] II:(a^2+5b^2)=4,(x^2+5y^2)=1 [/mm]
[mm] III:(a^2+5b^2)=2,(x^2+5y^2)=2 [/mm]

Fall III kann nie eintreten
Bei Fall I: a= [mm] \pm [/mm] 1, b=0, [mm] x=\pm [/mm] 2, y=0 [mm] \Rightarrow [/mm]  z [mm] \in \IZ^{\*} [/mm] [i [mm] \sqrt{5}] [/mm]
Bei Fall II: x = [mm] \pm [/mm] 1, y=0, a= [mm] \pm [/mm] 2, b=0 [mm] \Rightarrow [/mm]  w [mm] \in \IZ^{\*} [/mm] [i [mm] \sqrt{5}] [/mm]

Analog für 3;
-) 1+ i [mm] \sqrt{5} [/mm] irreduzibel
1+ i [mm] \sqrt{5} \not= [/mm] 0
1+ i [mm] \sqrt{5} \not\in \IZ^{\*} [/mm] [i [mm] \sqrt{5}] [/mm] da [mm] N(1+i\sqrt{5})=2 \not= [/mm] 1
2=N(1+ i [mm] \sqrt{5})=N(zw)=N(z)*N(w)=(a^2+5b^2)*(x^2+5y^2) [/mm]
Fälle:
[mm] I:(a^2+5b^2)=1,(x^2+5y^2)=2 [/mm]
[mm] II:(a^2+5b^2)=2,(x^2+5y^2)=1 [/mm]
Hier kann aber gar keiner der beiden Fälle eintreten??? Demnach gibt es keine Darstellung von 1+ i [mm] \sqrt{5} [/mm] aus zwei Faktoren?
Wie verfahre ich hier weiter?

Und dann ist noch meine Frage wie ich zeigen kann das Bedingung 1 erfüllt ist!!

LG,
sissi

        
Bezug
Faktorieller Ring, Gegenbsp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Mi 03.12.2014
Autor: sissile

Hallo zusammen,
Keiner eine Idee?

LG,
sissi

Bezug
        
Bezug
Faktorieller Ring, Gegenbsp: Antwort
Status: (Antwort) fertig Status 
Datum: 01:54 Do 04.12.2014
Autor: Schadowmaster

moin,

doch, es gibt ein paar Darstellungen von [mm] $1+i\sqrt{5}$ [/mm] aus zwei Faktoren, etwa [mm] $1\cdot (1+i\sqrt{5})$ [/mm] oder [mm] $-1\cdot(-1-i\sqrt{5})$. [/mm]
Allerdings ist [mm] $1+\sqrt{5}$ [/mm] irreduzibel, denn in jeder solchen Darstellung muss ein Faktor eine Einheit sein (Einheiten sind genau die Elemente, deren Norm $1$ oder $-1$ ist).

Zur 1:
Sei $a$ in $R$. Ist $a$ irreduzibel, so sind wir fertig.
Ist $a$ nicht irreduzibel (und keine Einheit, die schließen wir mal von vornherein aus), so gibt es Elemente $b$ und $c$, die beides keine Einheiten sind mit $a=bc$.
Sind nun $b,c$ beide irreduzibel, so sind wir fertig. Wenn nicht wenden wir auf $b$ und $c$ das gleiche Argument nochmal an, zerlegen diese weiter.
Auf diese Art bekommen wir eine Zerlegung von $a$ in irreduzible Elemente.
Nun wirst du sicher sagen: moment, dieser Algorithmus muss doch gar nicht terminieren, sprich die Zerlegung von $a$ könnte potentiell unendlich lang werden!
Allerdings kann das hier nicht passieren; und das verdanken wir der Norm.
Überlege dir, wie du $N(a),N(b)$ und $N(c)$ sowie das Wissen, dass $N(x)=1$ ausschließlich nur für Einheiten gilt, verwenden kannst, um zu zeigen, dass obiges Verfahren terminiert.


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]