matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFaktorgruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Faktorgruppen
Faktorgruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Di 21.07.2009
Autor: ms2008de

Aufgabe
Es sei (G,*) eine Gruppe und U= [mm] \{g \in G | h*g = g*h \forall h \in G \} [/mm]
a) Zeigen Sie, wenn G/U zyklisch ist, dann ist G abelsch
b) Berechnen Sie |G:U|, wenn G/ U zyklisch ist

Hallo,
hab leider mal wieder vor allem bei Teil a) große Schwierigkeiten. Hoffe jemand von euch kann mir einen Denkanstoß geben.
Bisher weiß ich, dass U selbst ein Normalteiler ist, und zyklisch heißt ja, G/U ist von einem Element erzeugt, aber wie komm ich hier weiter...?
Bei b) könnte ich natürlich Teil a)verwenden und sagen:Wenn G/U zyklisch ist, wissen wir: dann ist G ist abelsch. Dann wäre aber nach der Definition von U, U=G und somit auch |G|=|U|. Das würde ja aber nach Satz von Lagrange bedeuten, dass |G:U|=1 sein muss.
Ich hoffe jemand kann mir bei a) noch einen entscheidenden Tipp geben(und falls bei b) etwas falsch sein sollte, mich korrigieren,), wär um jede Hilfe dankbar.

Viele Grüße

        
Bezug
Faktorgruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Di 21.07.2009
Autor: statler


> Es sei (G,*) eine Gruppe und U= [mm]\{g \in G | h*g = g*h \forall h \in G \}[/mm]
>  
> a) Zeigen Sie, wenn G/U zyklisch ist, dann ist G abelsch
>  b) Berechnen Sie |G:U|, wenn G/ U zyklisch ist

Hi!

>  hab leider mal wieder vor allem bei Teil a) große
> Schwierigkeiten. Hoffe jemand von euch kann mir einen
> Denkanstoß geben.
>  Bisher weiß ich, dass U selbst ein Normalteiler ist, und
> zyklisch heißt ja, G/U ist von einem Element erzeugt, aber
> wie komm ich hier weiter...?

Sei aU ein erz. Element von G/U. Dann läßt sich ein Element g aus G darstellen als [mm] a^r*u [/mm] mit u [mm] \in [/mm] U. Jetzt schnappst du dir 2 davon und verknüpfst sie rechtsrum und linksrum.

>  Bei b) könnte ich natürlich Teil a)verwenden und
> sagen:Wenn G/U zyklisch ist, wissen wir: dann ist G ist
> abelsch. Dann wäre aber nach der Definition von U, U=G und
> somit auch |G|=|U|. Das würde ja aber nach Satz von
> Lagrange bedeuten, dass |G:U|=1 sein muss.
>  Ich hoffe jemand kann mir bei a) noch einen entscheidenden
> Tipp geben(und falls bei b) etwas falsch sein sollte, mich
> korrigieren,), wär um jede Hilfe dankbar.

b) sieht gut aus.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Faktorgruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Di 21.07.2009
Autor: ms2008de

Danke,
dann schreib ich also [mm] g_{1}*g_{2} =a^{r}*u*a^{s}*u =a^{r}*a^{s}*u*u [/mm] ( weil U abelsch ist) [mm] =a^{r+s}*u*u= a^{s}*a^{r}*u*u= a^{s}*u*a^{r}*u [/mm] (wiederum weil U abelsch ist) [mm] =g_{2}*g_{1} [/mm] , wobei [mm] g_{1},g_{2}, [/mm] a [mm] \in [/mm] G, u [mm] \in [/mm] U.
Und damit ist G abelsch.
Stimmt das soweit?

Viele Grüße

Bezug
                        
Bezug
Faktorgruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Di 21.07.2009
Autor: pelzig


> dann schreib ich also [mm]g_{1}*g_{2} =a^{r}*u*a^{s}*u =a^{r}*a^{s}*u*u[/mm]
> ( weil U abelsch ist) [mm]=a^{r+s}*u*u= a^{s}*a^{r}*u*u= a^{s}*u*a^{r}*u[/mm]
> (wiederum weil U abelsch ist) [mm]=g_{2}*g_{1}[/mm] , wobei
> [mm]g_{1},g_{2},[/mm] a [mm]\in[/mm] G, u [mm]\in[/mm] U.
>  Und damit ist G abelsch.
>  Stimmt das soweit?

Ja, bis auf einen kleinen Fehler. Du kannst ja wie statler bemerkt hat jedes [mm] $g\in [/mm] G$ schreiben als $a^ru$ für ein [mm] $r\in\IZ$ [/mm] und [mm]u\in U[/mm]. Aber für verschiedene Elemente [mm] $g_1,g_2\in [/mm] G$ sind es natürlich i.A. verschiedene r und u, d.h. du musst eigentlich anfangen mit [mm]g_{1}*g_{2} =a^{r}*u_1*a^{s}*u_2=...[/mm]. Die Begründung "weil U abelsch ist", stimmt auch nicht, denn [mm] $a^r$ [/mm] wird i.A. nicht in U liegen. Aber alle Elemente aus u kommutieren mit allen Elemente aus G (nach Definition von U), deshalb kannst du an den Stellen die Faktoren vertauschen.

Gruß, Robert

Bezug
                                
Bezug
Faktorgruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 21.07.2009
Autor: ms2008de

Hallo,  
> Ja, bis auf einen kleinen Fehler. Du kannst ja wie statler
> bemerkt hat jedes [mm]g\in G[/mm] schreiben als [mm]a^ru[/mm] für ein
> [mm]r\in\IZ[/mm] und [mm]u\in U[/mm]. Aber für verschiedene Elemente
> [mm]g_1,g_2\in G[/mm] sind es natürlich i.A. verschiedene r und u,
> d.h. du musst eigentlich anfangen mit [mm]g_{1}*g_{2} =a^{r}*u_1*a^{s}*u_2=...[/mm].

Also ich dachte mir eigentlich, dass ich jedes g auch ausdrücken könnte über [mm] a^{r}*e_{G}???, [/mm] denn [mm] e_{G} [/mm] liegt ja auch in U, das war mein Grund weshalb ich die u aus U nicht verschieden gewählt hab.
Geht das etwa nicht? Impliziert G/U zyklisch nicht, dass auch g zyklisch ist...?

Viele Grüße

Bezug
                                        
Bezug
Faktorgruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Di 21.07.2009
Autor: pelzig


> Also ich dachte mir eigentlich, dass ich jedes g auch
> ausdrücken könnte über [mm]a^{r}*e_{G}???,[/mm] denn [mm]e_{G}[/mm] liegt
> ja auch in U, das war mein Grund weshalb ich die u aus U
> nicht verschieden gewählt hab.

Nein, das gilt nicht. Über das u hast du keine Kontrolle.

>  Geht das etwa nicht? Impliziert G/U zyklisch nicht, dass
> auch G zyklisch ist...?

Nein, das gilt sicherlich nicht.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]