matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFaktorgruppe, isom. Einbettung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Faktorgruppe, isom. Einbettung
Faktorgruppe, isom. Einbettung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppe, isom. Einbettung: Diverse Fragen zum Thema
Status: (Frage) überfällig Status 
Datum: 15:24 Mo 25.07.2011
Autor: rammy

Aufgabe
Beim Lernen für die Algebra Prüfung stehe ich einigen Unklarheiten bevor:


1.) G/G={G} das geht mir noch ein, aber das hier:
Warum ist G/G [mm] \cong [/mm] {e}. (Also die Faktorgruppe, G nach G isomorph zu der Menge des neutralen Elements?)

2.)GL(n,K)/SL(n,K) [mm] \cong K\{0\} [/mm]

3.) Was passiert bei der isomorphen Einbettung? Also speziell hier in diesem Schritt, der Rest leuchtet mir in Etwa ein:

[mm] \IC [/mm] = [mm] ((\IRx\IR)\f(\IR)) \cup \IR. [/mm]

Warum wird [mm] f(\IR) [/mm] ausgeschlossen?


        
Bezug
Faktorgruppe, isom. Einbettung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 25.07.2011
Autor: schachuzipus

Hallo rammy,


> Beim Lernen für die Algebra Prüfung stehe ich einigen
> Unklarheiten bevor:
>  
> 1.) G/G={G} das geht mir noch ein, aber das hier:
> Warum ist [mm]G/G[/mm] [mm]\cong[/mm] [mm]\{e\}[/mm]. (Also die Faktorgruppe, G nach G
> isomorph zu der Menge des neutralen Elements?)

Ich würde meinen, dahinter steckt der (1.) Isomorphiesatz.

Betrachte den G-Homomorphismus [mm]\varphi:G\to G, g\mapsto e[/mm] ([mm]e[/mm] neutrales Element in [mm]G[/mm])

Dann ist [mm]\operatorname{ker}(\varphi)=G[/mm], also [mm]G/\underbrace{\operatorname{ker}(\varphi)}_{=G}\cong\underbrace{\varphi(G)}_{=\{e\}}[/mm]

>  
> 2.)GL(n,K)/SL(n,K) [mm]\cong K\setminus\{0\}[/mm]

Frage?

>  
> 3.) Was passiert bei der isomorphen Einbettung? Also
> speziell hier in diesem Schritt, der Rest leuchtet mir in
> Etwa ein:
>  
> [mm]\IC[/mm] = [mm]((\IRx\IR)\f(\IR)) \cup \IR.[/mm]

Laut Quelltext: [mm]\IC=((\IR\times\IR)\setminus f(\IR))\cup\IR[/mm]  <-- klick mal drauf!

>  
> Warum wird [mm]f(\IR)[/mm] ausgeschlossen?

Was ist [mm]f[/mm] ??

Gruß

schachuzipus


Bezug
                
Bezug
Faktorgruppe, isom. Einbettung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:57 Mo 25.07.2011
Autor: rammy

Ich danke dir für die kompetente Hilfestellungen / Erklärungen.
Punkt 1 ist mir nun ganz klar.

Bzgl. Punkt 2:
Die spezielle lineare Gruppe nach der allgemeinen linearen Gruppe soll isomorph zu einem Körper K ohne der Nullmenge isomorph sein? Das kann ich irgendwie nicht verstehen, bzw. verstehe ich es doch, aber falsch oder so!

Punkt 3:
Die Funktion f ordnet jedem x den Wert 0 zu, wird deswegen dieses aus dem Definitionsbereich ausgeschlossen, da sonst alle Werte auf 0 abgebildet werden und nicht in der (gausschen) Ebene verteilt bzw. als Punkte angesehen werden?

Bezug
                        
Bezug
Faktorgruppe, isom. Einbettung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mo 25.07.2011
Autor: schachuzipus

Hallo nochmal,

zu Punkt 2)


> Ich danke dir für die kompetente Hilfestellungen /
> Erklärungen.
>  Punkt 1 ist mir nun ganz klar.

Gut!

>  
> Bzgl. Punkt 2:
> Die spezielle lineare Gruppe nach der allgemeinen linearen
> Gruppe soll isomorph zu einem Körper K ohne der Nullmenge
> isomorph sein? Das kann ich irgendwie nicht verstehen, bzw.
> verstehe ich es doch, aber falsch oder so!

Wie in Punkt 1:

[mm] $\varphi=\operatorname{det}$ [/mm] die Determinantenabb.

[mm] $\operatorname{det}:\operatorname{Gl}(n,\IK)\to \IK\setminus\{0\}, A\mapsto \operatorname{det}(A)$ [/mm]

Invertierbare Matrizen haben nicht verschwindende Determinante.

Was ist der Kern der Determinantenabb.? Was das Bild?

Was gilt demnach nach dem 1.Isom.satz?

Gruß

schachuzipus


Bezug
                        
Bezug
Faktorgruppe, isom. Einbettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mo 25.07.2011
Autor: felixf

Moin!

> Punkt 3:
>  Die Funktion f ordnet jedem x den Wert 0 zu, wird deswegen
> dieses aus dem Definitionsbereich ausgeschlossen, da sonst
> alle Werte auf 0 abgebildet werden und nicht in der
> (gausschen) Ebene verteilt bzw. als Punkte angesehen
> werden?

Ich habe Zweifel, dass es sich um die Funktion $f : [mm] \IR \to \IR \times \IR$, [/mm] $x [mm] \mapsto [/mm] 0$ handelt. Schreibe bitte mal die formale Definition von $f$ auf.

LG Felix


Bezug
                        
Bezug
Faktorgruppe, isom. Einbettung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 27.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Faktorgruppe, isom. Einbettung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 27.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]