matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraFaktorgruppe G / ker f
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Faktorgruppe G / ker f
Faktorgruppe G / ker f < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppe G / ker f: Ich verstehe es nicht
Status: (Frage) beantwortet Status 
Datum: 09:45 Di 15.02.2005
Autor: jakobci5

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi Folks ich wäre wirklich euch dankbar wenn jemand hier mir es mal klar machen kann wie die sachen hier zusammen hängen!!

Ich habe schwirigkeiten mit der Bezeichnung das G/ker f isomorph Bild(f) ist!

Da kann ich nur sagen schön das es so etwas gibt sicherlich ist die Welt dadurch reicher geworden und um eine Packung Paracentamol.

Ferner wird man eingeleitet mit :

Äquivalenzrelation -klar(r,s,t,)
Nebenklassen -klar an einem Bsp gesehn
Normalteiler -gut Ugr. U teilt Gr. G |G|:|U| -Lagrange sagt auch etwas

Faktorgruppe- ? hmm 3 Tassen Kaffee sind schon weg aber immer noch ??
und dann die Krönung
G / ker f isomorph Bild(f) ??was ist das wie sieht das aus
*schluckweiteretablette*

Ich bin mir sicher das wie immer in der Algebra man versucht zu zeigen das die Struktur erhalten bleibt so das man mit nötigen Axiomen arbeiten kann.

*schmeisstsichaufdieKnie-hilfe*

Ich wäre euch wirklich dankbar wenn ihr mir dabei helfen köntet einfach mal das oben stehende klar zu machen WARUM WEHALB... *verzweifelt*
Ein Bsp dabei wäre sehr hilfreich von euch

        
Bezug
Faktorgruppe G / ker f: Versuch
Status: (Antwort) fertig Status 
Datum: 11:44 Di 15.02.2005
Autor: Hexe

Ok ich versuchs mal über Gleichungssysteme. Wenn du ein lin. Gleichungssystem lösen sollst also Ax=b dann ergibt sich dessen Lösung als Verschiebung der Lösung von Ax=0 sozusagen. Es werden also genausoviele [mm] \vec{x} [/mm] auf b abgebildet wie auf 0

Nichts anderes machst du mit G/ ker f.  Du zerlegst G  in die Gruppen von Elementen die unter f auf den selben  Wert/Vektor was auch immer abgebildet werden.  und damit ist dann eigentlich klar das das dann isomorph zum Bild von f ist.

So nun zur Faktorgruppe: Ich habe G und einen Normalteiler N von G , z.B. den Kern einer  Abbildung. Die Faktorgruppe hat als Elemente die Linksnebenklassen von N also lauter Teilmengen von G die dieselbe Mächtigkeit wie N haben. Beispiel [mm] \IZ_{8} [/mm]  als Normalteiler nehme ich [mm] \{0,4\} [/mm]
Meine Faktorgruppe besteht also aus [mm] \{ \{0,4\},\{1,5\},\{2,6\},\{3,7\}\} [/mm] wobei N wie immer in Faktorgruppen, der Null entspricht [mm] \{2,6\} [/mm] selbstinvers ist und das Inverse von [mm] \{1,5\},\{3,7\} [/mm] ist
Ich hoffe ich bin verständlich falls nicht nachfragen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]