matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungFachausdrücke Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Fachausdrücke Funktionen
Fachausdrücke Funktionen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fachausdrücke Funktionen: Hilfestellung gesucht!
Status: (Frage) beantwortet Status 
Datum: 19:39 So 18.10.2015
Autor: AliceImMatheland

Aufgabe
Gegeben ist die Funktion f(x)=x³. Erklären Sie den
Ausdruck (a): P=3, f(3)) und
den Ausdruck (b): P= (3,27).
Achten Sie auf die Unterschiede, welchen Vorteil hat Ausdruck (a) im Vergleich zu (b) und umgekehrt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Liebe Matheforum-User,

diese Aufgabe treibt mich ein wenig in den Wahnsinn. Aufgabenstellung ist, wie oben eingefügt, eine Funktion mit Fachausdrücken zu beschreiben.
Idee zu a:
'P' soll für einen beliebigen Punkt stehen, 'f' für Funktion. Die '(3)' ist jetzt der Wert der Funktion- oder doch die Stelle? Es ist eine Funktion 3. Grades (x³).

Idee zu b:
Der Punkt P hat die Koordinaten x=3 und y=27 ?. Er ist ein Punkt auf der Parabel mit der Funktionsgleichung f(x)=x³

Wäre super, wenn mir jemand helfen könnte. Danke im Vorraus :)













        
Bezug
Fachausdrücke Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 So 18.10.2015
Autor: DieAcht

Hallo AliceImMatheland und [willkommenmr]!


Ich nehme an, dass ihr folgende Konvention benutzt:

Für einen Punkt [mm] $P\$ [/mm] mit den Koordinanten [mm] $x\$ [/mm] und [mm] $y\$ [/mm] schreibt man [mm] $P=(x,y)\$. [/mm]
Dabei steht [mm] $x\$ [/mm] für das Funktionsargument und [mm] $y\$ [/mm] für den Funktionswert.

Beachte: Es ist [mm] $f(x)=y\$, [/mm] also [mm] $P=(x,y)=(x,f(x))\$. [/mm]

Sei nun [mm] $f(x):=x^3\qquad (x\in\IR)$. [/mm] Dann liegt der Punkt

      [mm] $P=(3,f(3))=(3,3^3)=(3,27)\$ [/mm]

auf dem Graphen von [mm] $f\$. [/mm]

Nun sind die zwei (äquivalente) Darstellungen $(3,27)$ und $(3,f(3))$ auf Vor- und Nachteile zu überprüfen.

Ein Beispiel:

Ein Vorteil von $(3,f(3))$: Wir wissen, dass der Punkt auf dem Graphen von [mm] $f\$ [/mm] liegt. Wieso?

Ein Nachteil von $(3,f(3))$: Wir müssen [mm] $f(3)\$ [/mm] ausrechnen um damit richtig zu arbeiten.


Gruß
DieAcht



Bezug
        
Bezug
Fachausdrücke Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:46 Mo 19.10.2015
Autor: fred97


> Gegeben ist die Funktion f(x)=x³. Erklären Sie den
>  Ausdruck (a): P=3, f(3))

Ich vermute, es lautet so:  P=(3,f(3))




> und
> den Ausdruck (b): P= (3,27).
>  Achten Sie auf die Unterschiede, welchen Vorteil hat
> Ausdruck (a) im Vergleich zu (b) und umgekehrt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Liebe Matheforum-User,
>  
> diese Aufgabe treibt mich ein wenig in den Wahnsinn.
> Aufgabenstellung ist, wie oben eingefügt, eine Funktion
> mit Fachausdrücken zu beschreiben.
>  Idee zu a:
> 'P' soll für einen beliebigen Punkt stehen

Nein, P ist ein ganz konkreter Punkt !


, 'f' für

> Funktion. Die '(3)' ist jetzt der Wert der Funktion- oder
> doch die Stelle?

f(3) ist der Funktionswert von f an der Stelle x=3.

Also [mm] f(3)=3^3=27. [/mm]



> Es ist eine Funktion 3. Grades (x³).
>  
> Idee zu b:
>  Der Punkt P hat die Koordinaten x=3 und y=27 ?. Er ist ein
> Punkt auf der Parabel mit der Funktionsgleichung f(x)=x³

Ja

FRED

>
> Wäre super, wenn mir jemand helfen könnte. Danke im
> Vorraus :)
>  
>
>
>
>
>
>
>
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]