matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertprobleme
Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mi 27.10.2010
Autor: nz_bluemchen

Aufgabe
Ein Kegel soll bei einer 12 cm langen Seitenkante ein möglichst großes Volumen bekommen. Wie errechnet man das Volumen?

V=





Wie errechnet ihr jetzt das Volumen?
Geht bitte davon aus das ich gar keine  Ahnung habe, weil in der Schule habe ich es Null verstanden. Also am Besten jeden Rechenschritt erklären und eventuell Eselsbrücken für ähnliche Aufgaben geben, wenn ihr da welche habt.

Danke schonmal im Vorraus

Euer Newbie Lisa ;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertprobleme: erste Schritte
Status: (Antwort) fertig Status 
Datum: 15:53 Mi 27.10.2010
Autor: Roadrunner

Hallo Lisa,

[willkommenmr] !!


Stellen wir zunächst die Hauptbedingung auf mit der Volumenformel eines Kegels:

[mm]V_{\text{Kegel}} \ = \ V(r,h) \ = \ \bruch{1}{3}*\pi*r^2*h[/mm]

Nun benötigen wir einen Zusammenhang zwischen dem Radius [mm]r_[/mm] und der Kegelhöhe [mm]h_[/mm] . Diese erhalten wir aus der gegebenen Seitenlänge.

Die Nebenbedingung hier lautet also mit Hilfe von Herrn Pythagoras:

[mm]r^2+h^2 \ = \ s^2 \ = \ 12^2[/mm]

Diese Gleichung kann man nun nach [mm]r^2 \ = \ ...[/mm] umstellen und in die obige Volumenformel einsetzen.

Damit erhält man eine Volumenformel / Funktionsvorschrift mit nur noch einer Unbekannten [mm]h_[/mm] .

Für diese Funktion ist dann eine Extremwertberechnung durchzuführen; also (zunächst) die Nullstellen der 1. Ableitung zu bestimmen.


Gruß vom
Roadrunner



Bezug
                
Bezug
Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 27.10.2010
Autor: nz_bluemchen

Hey, danke für deine Antwort Roadrunner.

Ich habe das jetzt so gerechnet und bin dann zu der Formel

V= 1/3 * "pi" * [mm] (12^2 [/mm] - [mm] h^2) [/mm] * h
gekommen.

Ich habe es so verstanden, dass man sie gleich 0 setzen muss und dann habe ich sie so ausgerechnet und kam zu dem Ergebnis h= 0,6. Was größenmäßig aber gar nicht passen kann,oder??
Ich bin verwirrt. Könntest du mir evtl die Aufgabe einmal vorrechnen damit ich wenigstens einmal eine richtige Aufgabe vor mir hab und sie dann nachvollziehen kann?!! Das wäre echt nett.
LG Lisa

Bezug
                        
Bezug
Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mi 27.10.2010
Autor: abakus


> Hey, danke für deine Antwort Roadrunner.
>  
> Ich habe das jetzt so gerechnet und bin dann zu der Formel
>  
> V= 1/3 * "pi" * [mm](12^2[/mm] - [mm]h^2)[/mm] * h
>  gekommen.
>  
> Ich habe es so verstanden, dass man sie gleich 0 setzen

Wer ist "Sie"?
Das V soll sicher NICHT 0 werden.
Die Gleichung V=... gibt das Volumen in Abhängigkeit der gewählten Höhe h an.
Wenn die Funktion V(h) ein Maximum haben sollte, dann ist dort der ANSTIEG der Funktion (also die erste Ableitung) Null.
Gruß Abakus

> muss und dann habe ich sie so ausgerechnet und kam zu dem
> Ergebnis h= 0,6. Was größenmäßig aber gar nicht passen
> kann,oder??
>  Ich bin verwirrt. Könntest du mir evtl die Aufgabe einmal
> vorrechnen damit ich wenigstens einmal eine richtige
> Aufgabe vor mir hab und sie dann nachvollziehen kann?!! Das
> wäre echt nett.
>  LG Lisa


Bezug
                                
Bezug
Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Mi 27.10.2010
Autor: nz_bluemchen

Sorry, das meinte ich auch.
Das kam bei mir raus als ich die erste Ableitung gleich 0 gesetzt hab.

Dein "Sie" sollte pi sein     also : /pi
PS: bin noch nicht so lange hier und merk grade das mein PC leider den querstrich für die andere richtung gar nich besitzt..

Bezug
                                        
Bezug
Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 27.10.2010
Autor: nz_bluemchen

Sorry, das meinte ich auch.
Das kam bei mir raus als ich die erste Ableitung gleich 0 gesetzt hab.

Dein "Sie" sollte pi sein     also : /pi
PS: bin noch nicht so lange hier und merk grade das mein PC leider den querstrich für die andere richtung gar nich besitzt..

Bezug
                                                
Bezug
Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 27.10.2010
Autor: chrisno

Nun schreib die erste Ableitung hin und setze sie gleich null. Dann erhältst Du eine quadratische Gleichung. Die musst Du lösen.
Für den "backslash" probier mal "Alt Gr" und "ß" (eszett) zusammen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]