matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Extremwertprobleme
Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertprobleme: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:14 Fr 26.05.2006
Autor: chuknoris

Aufgabe
a) Welche oben offene Schachtel in der form einer quadratischen Säule hat bei gegebenen Oberflächeninhalt [mm] 3dm^2 [/mm] ein möglichst großes Fassungsvermögen?

b) Löse Teilaufgabe  a) , falls die Schachtel anstatt nach oben nach vorne geöffnet ist. In welchem Verhältnis stehen jetzt Höhe und Breite der quadratischen Säule?

c) Löse die Teilaufgabe a) und b) allgemein bei gegebener Oberfläche .

Brauche dringend hilfe.
Kann die Aufgabe nicht Lösen . Hab auch keine Ansetze
Also wer kann helfen?

thx

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwertprobleme: Ansätze
Status: (Antwort) fertig Status 
Datum: 20:41 Fr 26.05.2006
Autor: Disap

Hallo chuknoris, [willkommenmr]!!!
Sehr lobenswert, dass du dich an einem Freitagabend mit Rechenaufgaben beschäftigst.

> a) Welche oben offene Schachtel in der form einer
> quadratischen Säule hat bei gegebenen Oberflächeninhalt
> [mm]3dm^2[/mm] ein möglichst großes Fassungsvermögen?
>  
> b) Löse Teilaufgabe  a) , falls die Schachtel anstatt nach
> oben nach vorne geöffnet ist. In welchem Verhältnis stehen
> jetzt Höhe und Breite der quadratischen Säule?
>  
> c) Löse die Teilaufgabe a) und b) allgemein bei gegebener
> Oberfläche .
>  Brauche dringend hilfe.
>  Kann die Aufgabe nicht Lösen . Hab auch keine Ansetze
>  Also wer kann helfen?

Bei Extremwertproblemen ist immer der Gag, dass man eine Zielfunktion und eine Nebenbedingung finden muss. Die Zielfunktion gibt letztendlich das an, was maximal werden soll. Das ist in diesem Fall das Fassungsvermögen bzw. das Volumen. Und wie berechnet man das?

$V(a) = [mm] a^2*h$ [/mm] Zielfunktion

[mm] $a*a=a^2$ [/mm] beschreibt die Grundfläche der Schachtel und die Höhe eben die Höhe... Was dann wiederum das Volumen ergibt. Das findet man aber auch in der Formelsammlung
In unserer Zielfunktion haben wir jetzt zwei Unbekannte, was sich natürlich nicht gut lösen lässt, daher brauchen wie die Nebenbedingung, die sich eben auf die Oberfläche bezieht.

Normalerweise berechnet sich die Oberfläche aus

$O = [mm] 2a^2+4a*h$ [/mm]

Unsere Schachtel ist nach oben geöffnet, d. h. sie ist oben offen und das 'obere' Loch zählt nicht zur Oberfläche. Dadurch ergibt sich als Nebenbedingung:

$O = [mm] a^2+4a*h$ [/mm] Nebenbedingung

Unser O ist [mm] 3dm^2 [/mm]

Daher gilt

$3 = [mm] a^2+4a*h$ [/mm]

Zusammenfassung:

$V(a) = [mm] a^2*h$ [/mm] Zielfunktion

$3 = [mm] a^2+4a*h$ [/mm] Nebenbedingung

Stelle die Nebenbedingung nach h um und setzt es in die Zielfunktion ein, leite diese ab, setze sich gleich null und berechne das a.




bei Aufgabe b bleibt die Zielfunktion die selbe, nur die Nebenbedingung ändert sich

$O = [mm] 2a^2+4a*h$ [/mm] Vorsicht: Hier musst du noch etwas verändern.

Ansonsten das selbe Spiel wie bei Aufgabe a.




Bei Aufgabe c musst du die 3 in der Nebenbedingung durch O ersetzen (dieses O steht für eine Zahl, die du kennst) und allgemein lösen (das O musst du während den Rechnungen die ganze Zeit mit durchziehen)

Deine Rechenschritte darfst du uns bei weiteren Fragen gerne mitteilen.

MfG!
Disap

Bezug
                
Bezug
Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Fr 26.05.2006
Autor: chuknoris

Danke für die schnelle Antwort. Ich versuche das mal zu lösen .
Bei Fragen melde ich mich.

Danke für die Ansetze . Super forum


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]