matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem mit Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertproblem mit Dreieck
Extremwertproblem mit Dreieck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem mit Dreieck: Gleichschenkliges Dreieck
Status: (Frage) beantwortet Status 
Datum: 20:46 Fr 24.10.2014
Autor: kth

Aufgabe
2 20cm breite Bretter -> eine V-förmige Rinne
Bei welchem Abstand der oberen Kanten ist das Fassungsvermögen am größten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Also ich habe ja die beiden Schenkel dieses Dreiecks gegeben (je 20cm) aber wie komme ich denn auf eine extremalbedingung ohne weitere Angaben zum Dreieck. Habe versucht mit Basis als x  eine Gleichung zu erstellen um die Höhe heraus zufinden aber am ende waren die zwei x werte kleiner als null znd das geht ja nicht bei dieser Aufgabe. .. also wie soll ich jz vorgehen?
Danke.

        
Bezug
Extremwertproblem mit Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Fr 24.10.2014
Autor: abakus


> 2 20cm breite Bretter -> eine V-förmige Rinne
> Bei welchem Abstand der oberen Kanten ist das
> Fassungsvermögen am größten?
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Also ich habe ja die beiden Schenkel dieses Dreiecks
> gegeben (je 20cm) aber wie komme ich denn auf eine
> extremalbedingung ohne weitere Angaben zum Dreieck. Habe
> versucht mit Basis als x eine Gleichung zu erstellen um
> die Höhe heraus zufinden aber am ende waren die zwei x
> werte kleiner als null znd das geht ja nicht bei dieser
> Aufgabe. .. also wie soll ich jz vorgehen?
> Danke.

Hallo,
zwischen den beiden Brettern besteht ein Winkel zwischen 0° und 180°.
Ermittle eine Formel für den Inhalt der Querschnittsfläche in Abhängigkeit  von diesem Winkel und finde heraus, für welchen Winkel diese Fläche maximal wird.
Aus diesem Winkel kannst du danach mit einfachen trigonometrischen Berechnungen auch den sich daraus ergebenden Abstand berechnen.
Gruß Abakus

Bezug
        
Bezug
Extremwertproblem mit Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Fr 24.10.2014
Autor: Al-Chwarizmi


> 2 20cm breite Bretter -> eine V-förmige Rinne
>  Bei welchem Abstand der oberen Kanten ist das
> Fassungsvermögen am größten?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Also ich habe ja die beiden Schenkel dieses Dreiecks
> gegeben (je 20cm) aber wie komme ich denn auf eine
> extremalbedingung ohne weitere Angaben zum Dreieck. Habe
> versucht mit Basis als x  eine Gleichung zu erstellen um
> die Höhe heraus zufinden aber am ende waren die zwei x
> werte kleiner als null    [haee]

wie das zustande kommen soll, verstehe ich nicht so recht !

> und das geht ja nicht bei dieser
> Aufgabe. .. also wie soll ich jz vorgehen?
>  Danke.


Hallo,

eigentlich sollte das mit deinem Ansatz ebenfalls ganz
gut zu lösen sein, obwohl der Vorschlag von Abakus zu
einer noch einfacheren Lösung führt.

Bezeichnen wir die Brettbreite (die 20 cm) mit a.
Dann hast du ein gleichschenkliges Dreieck mit der
Basis x und den beiden Schenkeln der Länge a.
Für die Höhe h dieses Dreiecks (über der Basis x)
gilt dann:

     $\ h\ =\ [mm] \sqrt{a^2-\left(\frac{x}{2}\right)^2}$ [/mm]

Die zu maximierende Größe ist der Flächeninhalt F
des Dreiecks, also

     $\ F\ =\ [mm] \frac{x*h}{2}$ [/mm]

Stattdessen kann man z.B. ebensogut die Größe Q
mit

     $\ Q\ =\ [mm] x^2*h^2$ [/mm]

maximieren. Mach daraus eine Funktion Q(x) und löse
die entstehende Extremalaufgabe (natürlich immer
noch unter der Voraussetzung, dass x positiv sein
soll). Da gibt es bestimmt eine positive (und korrekte)
Lösung des Problems !

LG ,    Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]