matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtremwertproblem Max./Min.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Extremwertproblem Max./Min.
Extremwertproblem Max./Min. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem Max./Min.: Frage
Status: (Frage) beantwortet Status 
Datum: 23:23 Mi 29.06.2005
Autor: Mikke

hallo!
Ich soll den Flächeninhalt der Ellipse, die durch den Schnitt des Ellipsoids
  [mm] x^{2}+y^{2}+4z^{2}=1 [/mm] mit der Ebene  x+y+z=0 ensteht, bestimmen.
Wie mach ich das hier?
Also man weiß,dass für reele Zahlen a,b>0 der Flächeninhalt der Ellipse E= {(x,y)  [mm] \in \IR^{2} [/mm] : [mm] (x/a)^{2}+(y/b)^{2}=1} [/mm] ist gegeben durch  [mm] \pi [/mm] ab.
Müsste nun irgendwie ein geeignetes extrwemwertproblem mit nebenbedingungen formulieren. Doch was nehm ich das?wie mach ich das? wie kann ich dann auf den Flächeninhalt schließen?
Wär gut wenn ihr mir helfen könntet.
bis dann mikke und danke schon mal

        
Bezug
Extremwertproblem Max./Min.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Do 30.06.2005
Autor: holy_diver_80

Hallo Mikke,

Zunächst einmal möchte ich Dich fragen, ob die Frage, die Du hier gepostet hast, auch genau so auf Deinem Übungsblatt steht. Dein Ellipsoid ist nämlich eine ganz normale Kugel mit Radius 1, und da die Schnittebene genau durch den Nullpunkt geht, muss man sich noch nicht einmal Gedanken über den Radius das Schnittkreises machen. (Man könnte das Koordinatensystem gerade so drehen, das die Ebene x+y+z=0 in den neuen Koordinaten genau der x-y-Ebene entspricht. Der Kugel tut das nichts.) Der Kreisradius ist dann nämlich auch 1, und der Kreis (die Ellipse) hat daher den Flächeninhalt [mm] \pi. [/mm]

Liebe Grüße,
Holy Diver

Bezug
        
Bezug
Extremwertproblem Max./Min.: mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Do 30.06.2005
Autor: Mikke

hab grad die verbesserung vorgenommen.hoffe du kannst mir jetzt trotzdem noch helfen....

Bezug
        
Bezug
Extremwertproblem Max./Min.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Fr 01.07.2005
Autor: Stefan

Hallo Mikke!

Warum setzt du nicht einfach $z=-x-y$ ein und bringst die entstehende Gleichung durch eine Hauptachsentransformation auf Normalform, anhand derer du den Flächeninhalt mit Hilfe deiner Formel unmittelbar ablesen kannst?

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]