matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem, Aufgabenlös
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Extremwertproblem, Aufgabenlös
Extremwertproblem, Aufgabenlös < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem, Aufgabenlös: Hilfe beim Lösen der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:27 Mo 23.02.2015
Autor: dertli

Aufgabe
Ein Hersteller von XY möchte sein Produkt in neuer Verpackung anbieten. Er entscheidet sich für eine Quaderförmige Pappschachtel, bei der die Tiefe z aufgrund von Produktionsgegebenheiten 2/3 der Breite x betragen muss. Ermitteln Sie welche Maße (B/H/T) die Verpackung haben muss, wenn bei vorgegebenem Volumen von 48600 cm3 die Verpackungsoberfläche minimiert werden soll. (In der Zeichnung ist Breite x, Tiefe z und Höhe y)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich habe die Aufgabe als Hausaufgabe bekommen. Ich würde gerne die Aufgabe lösen und verstehen. Mir fehlt leider jedes Verständnis dafür. Kann mir bitte jemand erklären, wie ich die Aufgabe lösen soll am Besten so, dass ich es auch verstehe. Wenn jemand nerven dafür hat, bin ich für jede Unterstützung sehr dankbar. Bisher habe ich die Aufgaben versucht zu lösen, indem ich mir die vorherigen Aufgaben angeschaut habe ;-( weil es nicht anders ging. Danke für die Hilfe.

        
Bezug
Extremwertproblem, Aufgabenlös: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mo 23.02.2015
Autor: fred97


> Ein Hersteller von XY möchte sein Produkt in neuer
> Verpackung anbieten. Er entscheidet sich für eine
> Quaderförmige Pappschachtel, bei der die Tiefe z aufgrund
> von Produktionsgegebenheiten 2/3 der Breite x betragen
> muss. Ermitteln Sie welche Maße (B/H/T) die Verpackung
> haben muss, wenn bei vorgegebenem Volumen von 48600 cm3 die
> Verpackungsoberfläche minimiert werden soll. (In der
> Zeichnung ist Breite x, Tiefe z und Höhe y)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Die Oberfläche berechnet sich zu

(1) O=2yz+2xy+2xz.

Nun ist [mm] z=\bruch{2}{3}x. [/mm] Setze dies in (1) ein. Dann hängt O nur noch von x und y ab.

Für das Volumen V gilt: V=xyz=48600. Ersetze auch hier z durch [mm] \bruch{2}{3}x, [/mm] also

  [mm] V=\bruch{2}{3}x^2y=48600. [/mm] Löse diese Gl. nach y auf und setze das Resultat in (1) ein.

O hängt nun nur noch von x ab, also O(x).

O sollst Du minimieren. Hilft das weiter ?

FRED

>
> Hallo, ich habe die Aufgabe als Hausaufgabe bekommen. Ich
> würde gerne die Aufgabe lösen und verstehen. Mir fehlt
> leider jedes Verständnis dafür. Kann mir bitte jemand
> erklären, wie ich die Aufgabe lösen soll am Besten so,
> dass ich es auch verstehe. Wenn jemand nerven dafür hat,
> bin ich für jede Unterstützung sehr dankbar. Bisher habe
> ich die Aufgaben versucht zu lösen, indem ich mir die
> vorherigen Aufgaben angeschaut habe ;-( weil es nicht
> anders ging. Danke für die Hilfe.


Bezug
                
Bezug
Extremwertproblem, Aufgabenlös: Hausaufgabenlösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Di 24.02.2015
Autor: dertli

Hallo Fred, vielen Dank für deine Hilfe, das hilft mir auf jeden Fall weiter. Ich mache mich heute Nachmittag ran auf die Aufgabe, zur Zeit bin ich auf der Arbeit und habe zeitmangel. Herzlichen Dank nochmals

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]