matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: maximale Oberfläche
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:21 So 02.10.2005
Autor: DaveC86

Hallo,

die Aufgabe ist folgende:
In einem Kegel mit dem Radius R und der Höhe H soll ein Zylinder mit möglichst großer Oberfläche einbeschrieben werden, dabei kommt bei mir bei der Extremumbestimmung in Betrachtung von r immer 0 heraus und bei Einsetzten von Zahlen auch:

h sei Höhe des Zylinders; r sei radius des Zylinders; R,H s.o.

Zielfunktion:
O(r,h)= 2 [mm] \pi* [/mm] r²+2 [mm] \pi*rh [/mm]

Nebenbesingung:
aus Strahlensatz geht heraus:
(H-h)/H   =   r/R

h=H-(rH/R)

Veränderte Zielfunktion:
O(r)=2 [mm] \pi*r²+2 \pi*r [/mm] *[H-(rH/R)]
O(r)=2 [mm] \pi*r²+2 \pi*rH-(2 \pi*r²H)/R [/mm]

O'(r)=4 [mm] \pi*r+2 \pi*H-(4 \pi*Hr)/R [/mm]
O'(r)=4 [mm] \pi*r+2 \pi*H-(4 \pi*Hr)/R=0 [/mm]

wo liegt hier der Fehler?
Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Extremwertproblem: Bis dato kein Fehler!
Status: (Antwort) fertig Status 
Datum: 19:42 So 02.10.2005
Autor: Loddar

Hallo Dave,

[willkommenmr] !!


> Zielfunktion:
> O(r,h)= 2 [mm]\pi*[/mm] r²+2 [mm]\pi*rh[/mm]

[ok]



> Nebenbedingung: aus Strahlensatz geht heraus:
> (H-h)/H   =   r/R

> h=H-(rH/R)

[ok]


  

> Veränderte Zielfunktion:
> O(r)=2 [mm]\pi*r²+2 \pi*r[/mm] *[H-(rH/R)]
> O(r)=2 [mm]\pi*r²+2 \pi*rH-(2 \pi*r²H)/R[/mm]

[ok]


> O'(r)=4 [mm]\pi*r+2 \pi*H-(4 \pi*Hr)/R[/mm]
> O'(r)=4 [mm]\pi*r+2 \pi*H-(4 \pi*Hr)/R=0[/mm]

[ok]


Ich konnte bisher keinen Fehler entdecken. Dein Fehler muss dann in der Umformung der 1. Ableitung nach $r_$ liegen.

Ich erhalte hier (bitte nachrechnen, da ohne Gewähr) :

$r \ = \ [mm] \bruch{H*R}{2*(H-R)}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Extremwertproblem: geht klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:50 Mo 03.10.2005
Autor: DaveC86

Hallo,
danke für die Überprüfung, werde mich damit morgen nochmal beschäftigen
gute nacht


PS:
Tut mir Leid nochmal nachfragen zu müssen, aber wenn ich versuche das umzuformen geht das r immer verloren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]