matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Frage
Status: (Frage) beantwortet Status 
Datum: 15:23 So 20.02.2005
Autor: anni-1986

Hallo ihr lieben,

habe mich heute wieder den mathe-aufgaben gewidmet.

die aufgabe ist:
Gegeben ist

$ [mm] f(x)=x\cdot{}\wurzel{1-\bruch{1}{5}x} [/mm] $

Die Funktion bildet mit der x-Achse eine Fläche. in diese fläche wird ein dreieck so eingeschrieben, dass zwei eckpunkte die nullstellen der Funktion darstellen und ein eckpunkt auf der funktion liegt. bestimme den maximalen flächeninhalt des dreieckes.

Die funktion für die berechnung des flächeninhaltes habe ich schon aufgestellt:

[mm] A(x)=2,5x*\wurzel{1- \bruch{1}{5}x} [/mm]

Die erste Ableitung ist dann:

[mm] A(x)=2,5*0,5*(x²-0,2x^3)^{-0,5}*(2x-0,6x²) [/mm]

Dann habe ich versucht extrema zu bestimmen, nur ich komme nicht auf das richtige ergebnis. ich habe es schon mehrmals versucht. das ergebnis für den maximalen flächeninhalt soll 4,18 FE sein.

kommt ihr auf das ergebnis? und wenn ja, könnt ihr mir das vorrechnen?

gruß anni

        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 20.02.2005
Autor: cremchen

halli hallo!

> habe mich heute wieder den mathe-aufgaben gewidmet.
>  
> die aufgabe ist:
>  Gegeben ist
>  
> [mm]f(x)=x\cdot{}\wurzel{1-\bruch{1}{5}x}[/mm]
>  
> Die Funktion bildet mit der x-Achse eine Fläche. in diese
> fläche wird ein dreieck so eingeschrieben, dass zwei
> eckpunkte die nullstellen der Funktion darstellen und ein
> eckpunkt auf der funktion liegt. bestimme den maximalen
> flächeninhalt des dreieckes.
>  
> Die funktion für die berechnung des flächeninhaltes habe
> ich schon aufgestellt:
>  
> [mm]A(x)=2,5x*\wurzel{1- \bruch{1}{5}x} [/mm]
>  
> Die erste Ableitung ist dann:
>  
> [mm]A(x)=2,5*0,5*(x²-0,2x^3)^{-0,5}*(2x-0,6x²) [/mm]

Also ich erhalte für die erste Ableitung mittels Kettenregel:
[mm] A'(x)=2,5\wurzel{1-\bruch{1}{5}x}-0,25\bruch{x}{\wurzel{1-\bruch{1}{5}x}}=0 [/mm]
nach x auflösen ergibt dann [mm] x=\bruch{10}{3} [/mm]

> Dann habe ich versucht extrema zu bestimmen, nur ich komme
> nicht auf das richtige ergebnis. ich habe es schon mehrmals
> versucht. das ergebnis für den maximalen flächeninhalt soll
> 4,18 FE sein.

Also ich erhalte als Ergebnis:
[mm] A(\bruch{10}{3})=4,81 [/mm]
Kann das sein dass du da nen Zahlendreher drin hast?
Also ich hoffe ich konnte dir weiterhelfen!

Liebe Grüße
Ulrike

Bezug
                
Bezug
Extremwertproblem: Frage und Mitteilung
Status: (Frage) beantwortet Status 
Datum: 19:18 So 20.02.2005
Autor: anni-1986

hi ulrike,

kann sein, dass der lehrer das ergebnis falsch gesagt hat.

ich habe schwierigkeiten die erste ableitung nach x aufzulösen, aufgrund der wurzel und so weiter. kannst du mir das mal schrittweise aufschreiben?

gruß anni

Bezug
                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 So 20.02.2005
Autor: Zwerglein

Hi, anni,

dann multiplizier doch einfach die ganze Gleichung mit [mm] \wurzel{1-\bruch{1}{5}*x} [/mm]  !

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]