matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 25.04.2008
Autor: Elisabeth17

Aufgabe
Welches Rechteck mit dem Umfang 30cm hat die kürzeste Diagonale?

Hallo Matheforum!

Ich habe eine Frage zu dieser Aufgabe.

Da u = 2*(a+b) ist für u=30cm,
a=15 -b.

Diagonale d= [mm] \wurzel{(15-b)^2+b^2} [/mm] = [mm] \wurzel{2b^2-30b+225} [/mm]

d wird minimal, wenn das, was unter der Wurzel steht minimal wird.

Soweit ist alles klar.
Jetzt kommt meine Frage:

Muss ich für [mm] f(x)=2b^2-30b+225 [/mm] jetzt mithilfe der Mitternachtsformel die Nullstelle errechnen?
Oder soll ich die erste Ableitung null setzten, um das Minimum dieser nach oben geöffneten Normalparbel zu ermitteln?

Beide Male kommt x=a=b=7,5 cm heraus.

Welcher Rechenweg ist hier also richtig?
Funktion null setzen oder Minimum errechnen?

Veilen, lieben Dank für die Hilfe!


LG Eli





        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Fr 25.04.2008
Autor: MathePower

Hallo Elisabeth17,

> Welches Rechteck mit dem Umfang 30cm hat die kürzeste
> Diagonale?
>  Hallo Matheforum!
>  
> Ich habe eine Frage zu dieser Aufgabe.
>  
> Da u = 2*(a+b) ist für u=30cm,
> a=15 -b.
>  
> Diagonale d= [mm]\wurzel{(15-b)^2+b^2}[/mm] = [mm]\wurzel{2b^2-30b+225}[/mm]
>  
> d wird minimal, wenn das, was unter der Wurzel steht
> minimal wird.
>  
> Soweit ist alles klar.
>  Jetzt kommt meine Frage:
>  
> Muss ich für [mm]f(x)=2b^2-30b+225[/mm] jetzt mithilfe der
> Mitternachtsformel die Nullstelle errechnen?
>  Oder soll ich die erste Ableitung null setzten, um das
> Minimum dieser nach oben geöffneten Normalparbel zu
> ermitteln?
>  
> Beide Male kommt x=a=b=7,5 cm heraus.
>  
> Welcher Rechenweg ist hier also richtig?
>  Funktion null setzen oder Minimum errechnen?

Das Minimum errechnen.

Die Funktion kannst Du hier auch so schreiben:

[mm]f(x)=2b^2-30b+225=2*\left(b^2-15b\right)+225[/mm]
[mm]=2*\left(b-\bruch{15}{2}\right)^{2}-2*\left(\bruch{15}{2}\right)^{2}+225=2*\left(b-\bruch{15}{2}\right)^{2}+\bruch{225}{2}[/mm]

Damit siehst Du schon, daß die Funktion ein Minimum bei [mm]b=\bruch{15}{2}[/mm] hat.

>  
> Veilen, lieben Dank für die Hilfe!
>  
>
> LG Eli
>  
>
>
>  

Gruß
MathePower

Bezug
                
Bezug
Extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Fr 25.04.2008
Autor: Elisabeth17

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]