matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExtremwerte und Wendepunkte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Extremwerte und Wendepunkte
Extremwerte und Wendepunkte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte und Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Mi 22.03.2006
Autor: Michi87

Aufgabe
[mm] f(x)=x^2*(lnx)^2 [/mm]

Bestimme Extrema und Wendepunkte  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi ihr,
an dieser Funktion knabber ich jetzt schon seit fast einer Woche. Mit meinem Ergebnis bin ich auch ganz zufreieden würde aber doch gerne mal, dass mal einer drüberguckt, ob da irgendwas falsch ist.

Ableitungen:
Ich hab mir gedacht es wäre um einiges leichter, wenn ich die Funktion so umwandel:
[mm] f(x)=(x*lnx)^2 [/mm]
f(x) ist als Produkt auf  [mm] \IR^+ [/mm] differenzierbarer Funktionen differenzierbar auf [mm] \IR^+ [/mm]
f´(x)=2(x*lnx)*(1+lnx)
f''(x)= [mm] 2(lnx+1)*(lnx+1)+2(x*lnx)*\bruch{1}{x}=2(lnx)^2+2lnx [/mm]
[mm] f'''(x)=4(lnx+1)*\bruch{1}{x}+\bruch{2}{x} [/mm]

Extrema:
notwendig für das vorliegen eines Extremums bei (x0) ist f´(x)=o:

0=2(x*lnx)*(1+lnx)
[mm] \gdw [/mm] 0=x [mm] \vee [/mm] 0=lnx [mm] \vee [/mm] lnx=-1
[da x  [mm] \not= [/mm] 0]
[mm] \gdw [/mm]  x=1 [mm] \vee [/mm] x=  [mm] \bruch{1}{e} [/mm]

hinreichend für das vorliegen eines Extremuns in (x0) ist:
f'(x0)=0 [mm] \wedge f''(x0)\not= [/mm] 0
f''(1)=2
da 2>0 liegt bei x=1 ein Minimum vor

[mm] f''(\bruch{1}{e})=-2 [/mm]
da -2<0 ist, liegt bei [mm] x=\bruch{1}{e} [/mm] ein Maximum vor.

Funktionswerte:
f(1)=0

[mm] f(\bruch{1}{e})=\bruch{1}{e^2} [/mm]

Wendepunkte:
notwendig für das Vorliegen eines Wendepunktes in (x0) ist: f´´(x0)=0

         [mm] 0=2(lnx+1)^2+2lnx [/mm]
[mm] \gdw 0=2(lnx)^2 [/mm] + 6lnx+2
[mm] \gdw [/mm] lnx= - [mm] \bruch{3}{2} \pm \wurzel{\bruch{7}{4}} [/mm]
[mm] \gdw [/mm] lnx=  [mm] \bruch{-3+ \wurzel{5}}{2} \vee [/mm] lnx= [mm] \bruch{-3- \wurzel{5}}{2} [/mm]
[mm] \gdw [/mm] x= e [mm] ^\bruch{-3+ \wurzel{5}}{2} \vee [/mm] x= e [mm] ^\bruch{-3- \wurzel{5}}{2} [/mm]


hinreichend für das vorliegen eines Wendepunktes bei x0 ist: f´´(x0)=0 [mm] \wedge [/mm] f´´´(x0)  [mm] \not=0 [/mm]

da unser Mathelehrer unsere Aufgaben eigentlich immer so stellt, dass alles problemlos ohne Taschenrechner geht,kommt mir das schon komisch vor. Wenn das jetzt bisher alles so stimmt nehm ich mir halt meinen Taschenrechner und überprüfe das. Aber mit den Werten berechne ich keine genauen Ergebnisse im Kopf...

Danke schonmal im Voraus und liebe Grüße
Michi



        
Bezug
Extremwerte und Wendepunkte: richtig
Status: (Antwort) fertig Status 
Datum: 17:18 Mi 22.03.2006
Autor: kampfsocke

Hallo Michi,

deine Ergebnisse scheinen richtig zu sein. Ich habe das selbe, und mein Taschenrechner auch ;-).
Allerdings ist nur die erste Wendestelle richtig. Wenn du die zweite einfach mal mit dem Taschenrechner ausrechnest, siehst du das der Wendepunkt negativ ist. Die Funktion ist aber nur im positiven definiert.

Auf deine schreibweise musst ein bisschen aufpassen. Du schreibst immermal "x0", was eigentlich die Bezeichnung für eine Nullstellen ist, wo es aber gar nicht um Nullstellen geht.

Viele Grüße,
Sara

Bezug
                
Bezug
Extremwerte und Wendepunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Mi 22.03.2006
Autor: Michi87

vielen lieben Dank. Gut zu wissen, dass sich die Mühe gelohnt hat.

Liebe Grüße
Michi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]