matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesExtremwerte(mehrere Variablen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Extremwerte(mehrere Variablen)
Extremwerte(mehrere Variablen) < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte(mehrere Variablen): Lagrange?
Status: (Frage) beantwortet Status 
Datum: 15:10 Mo 01.08.2005
Autor: stowoda

Hallo!

Habe hier folgende Aufgabe:

Wo nimmt die Funktion f(x,y)=y²-x³ ihre Max. und Min- Werte auf dem Rechteck 1 [mm] \le [/mm] x  [mm] \le [/mm] 2 , 1  [mm] \le [/mm] y  [mm] \le [/mm] 3 ein?

Ich habe versucht, mit Hilfe der Hesse Matrix, Punkte herauszufinden die in Frage kämen. Allerdings sieht es so aus als ob im Inneren keine Extremwerte vorhanden wären.

Es gibt doch eine möglichkeit den Lagrange' schen Multiplikator zu verwenden.. Ich weiss jedoch nicht wie das genau funktioniert, bzw. wie meine Nebenbedingung lautet.

Wäre dankbar wenn mir jemand ein wenig auf die Sprünge helfen könnte.

Gruss

stowoda

        
Bezug
Extremwerte(mehrere Variablen): Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Mo 01.08.2005
Autor: MatthiasKr

Hallo stowoda,

ich würde folgendermaßen vorgehen:

1) das innere des gebiets auf kritische punkte [mm] $\nabla [/mm] f=0$ testen. (was du ja schon getan hast)

2)die funktion getrennt davon auf dem rand betrachten, d.h. zum Beispiel

[mm] $f(x,1)=1-x^3$ [/mm] für $1< x< 2$.

Das wäre also die Funktion auf einem der 4 seitenränder des rechtecks. im grunde mußt du jetzt für die vier seiten extremwerte berechnen, und dann eventuell noch die funktionswerte in den ecken. ist zwar ein bißchen aufwändig, aber am ende solltest du deine extremwerte haben.

ob man eventuell auch ein modifiziertes lagrange-verfahren anwenden kann, ist mir jetzt nicht bekannt. normalerweise funktioniert dieses mit nebenbedingungen in gleichungsform, d.h. man schränkt die funktion auf mannigfaltigkeiten (also zB flächen) niedrigerer dimension ein.


Viele Grüße
Matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]