matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwerte + totale Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte + totale Ableitung
Extremwerte + totale Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte + totale Ableitung: Definition nicht verstehe
Status: (Frage) beantwortet Status 
Datum: 14:06 Mi 29.08.2007
Autor: makw

Aufgabe
M [mm] \subset R^{n}, [/mm] f:M->R stetig. Sei a [mm] \in [/mm] M.
a ist ein relatives Extremum, wenn es eine offene Umgebung  U gibt, so dass f(a)>f(x) oder f(a)<f(x) [mm] \forall [/mm] x [mm] \in [/mm] M [mm] \cap [/mm] U.

Nun habe ich Probleme im Verstaendnis dieser Definition oder anderen aus den Buechern, die sich mit Extremwerte und Maxima und Minima beschaeftigen. Kann jemand anhand eines einfaches Beispieles erklaeren, wie ich solche Punkte berechnen kann? Wenn es irgentwie geht, ein Beispiel fuer die totale Ableitung waere auch gut oder wenigstens eine Anleitung.
Vielen Dank im Voraus, vielen Dank.

        
Bezug
Extremwerte + totale Ableitung: Beispiel
Status: (Antwort) fertig Status 
Datum: 14:45 Mi 29.08.2007
Autor: subclasser

Hallo, makw!

Dann gebe ich dir mal ein einfaches Beispiel $f(x,y) = [mm] x^2 [/mm] + [mm] y^2$. [/mm] Die Funktion ist offensichtlich stetig und hat ein striktes lokales Minimum im Ursprung des Koordinatensystems. Dann wollen wir das auch einmal nachrechnen. Das funktioniert fast genauso wie im Eindimensionalen.

Als erstes brauchen wir die Ableitung, den sogenannten Gradienten. Dazu bestimmt's du einfach die partiellen Ableitungen der Funktion
[mm] $$\frac{\partial f}{\partial x} [/mm] (x,y) = 2x [mm] \quad \frac{\partial f}{\partial y} [/mm] (x,y) = 2y$$
Da die partiellen Ableitungen stetig(!) sind, haben wir auch schon die totale Ableitung gefunden
[mm] $$\nabla [/mm] f(x,y) = (2x, 2y)$$
Nun suchen wir unsere kritischen Punkte: Eine notwendige Bedingung für ein lokales Extrema ist [mm] $\nabla [/mm] f(x,y) = (0,0)$. Es kommt also nur der Nullpunkt in Frage. Nun müssen wir noch wie im eindimensionalen die hinreichende Bedingung zu Rate ziehen. Dazu brauchen wir die zweiten partiellen Ableitungen.
[mm] $$\frac{\partial^2 f}{\partial x^2} [/mm] (x,y) = 2  [mm] \quad \frac{\partial^2 f}{\partial x \partial y} [/mm] (x,y) = 0 [mm] \quad \frac{\partial^2 f}{\partial y \partial x} [/mm] (x,y) = 0 [mm] \quad \frac{\partial^2 f}{\partial y^2} [/mm] (x,y) = 2$$
Damit lautet die Hessematrix am Ursprung
$$Hess f(0,0) = [mm] \begin{pmatrix}2 & 0 \\ 0 & 2 \end{pmatrix}$$ [/mm]
Diese ist offensichtlich postiv definit (Analog zu [mm] $f'(x_0) [/mm] > 0$). Damit ist die hinreichende Bedingung erfüllt und es liegt ein Minimum im Ursprung vor (in diesem Beispiel kannst du sogar jede Umgebung um den Ursprung wählen).

Ich hoffe, das hilft ein wenig weiter!

Gruß!

Bezug
                
Bezug
Extremwerte + totale Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Do 06.09.2007
Autor: makw

danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]