matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwerte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte
Extremwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 23.06.2010
Autor: steem

Aufgabe
Berechne Art und Lage der folgenden Funktion:

$f(x,y)=x* [mm] y^3-\bruch{3}{2}x^2* [/mm] y-8x$

Zuerst habe ich alle benötigten Ableitungen berechnet.

[mm] \bruch{{\partial}f}{{\partial}x}=y^3-3xy-8 [/mm]
[mm] \bruch{{\partial}f}{{\partial}x^2}=-3y [/mm]
[mm] \bruch{{\partial}f}{{\partial}xy}=3y^2-3x [/mm]

[mm] \bruch{{\partial}f}{{\partial}y}=3xy^2-\bruch{3}{2}x^2 [/mm]
[mm] \bruch{{\partial}f}{{\partial}y^2}=6xy [/mm]
[mm] \bruch{{\partial}f}{{\partial}y}=3y^2-3x [/mm]

Dann habe ich den Gradienten gleich Null gesetzt:

[mm] grad(f)=\begin{cases} I: y^3-3xy-8=0 \\ II: 3xy^2-\bruch{3}{2}x^2 =0 \end{cases} [/mm]

Jetzt weiß ich nicht genau wie man die Gleichungen am besten auflöst.
Ich habe Gleichung II nach x aufgelöst.

[mm] x=2*y^2 [/mm]

Das habe ich dann in Gleichung I eingesetzt und bekomme

[mm] y=\wurzel[3]{-{\bruch{8}{5}}} [/mm]

Das ist jetzt irgendwie blöd, weil man drei Lösungen bekommt von denen zwei einen Komplexen Anteil haben.
Aber alle anderen Auflösungen sind nicht sehr viel angenehmer..

Habe ich irgendwas übersehen oder falsch aufgelöst/eingesetzt??
Oder benutzt man hier nicht die Tatsache, dass eine dritte Wurzel drei Lösungen ergibt und benutzt nur die eine Lösung (-1,1696..) die der Taschenrechner ausgibt?
Dann ist noch die Frage wie man die Art des Extremwertes rausfinden, also ob er global oder lokal ist?



        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Mi 23.06.2010
Autor: MathePower

Hallo steem,

> Berechne Art und Lage der folgenden Funktion:
>  
> [mm]f(x,y)=x* y^3-\bruch{3}{2}x^2* y-8x[/mm]
>  Zuerst habe ich alle
> benötigten Ableitungen berechnet.
>  
> [mm]\bruch{{\partial}f}{{\partial}x}=y^3-3xy-8[/mm]
>  [mm]\bruch{{\partial}f}{{\partial}x^2}=-3y[/mm]
>  [mm]\bruch{{\partial}f}{{\partial}xy}=3y^2-3x[/mm]
>  
> [mm]\bruch{{\partial}f}{{\partial}y}=3xy^2-\bruch{3}{2}x^2[/mm]
>  [mm]\bruch{{\partial}f}{{\partial}y^2}=6xy[/mm]
>  [mm]\bruch{{\partial}f}{{\partial}y}=3y^2-3x[/mm]
>  
> Dann habe ich den Gradienten gleich Null gesetzt:
>  
> [mm]grad(f)=\begin{cases} I: y^3-3xy-8=0 \\ II: 3xy^2-\bruch{3}{2}x^2 =0 \end{cases}[/mm]
>  
> Jetzt weiß ich nicht genau wie man die Gleichungen am
> besten auflöst.
> Ich habe Gleichung II nach x aufgelöst.
>  
> [mm]x=2*y^2[/mm]


Aus Gleichung II erhältst Du zwei Fälle, den obengenannten
und noch einen weiteren.


>  
> Das habe ich dann in Gleichung I eingesetzt und bekomme
>  
> [mm]y=\wurzel[3]{-{\bruch{8}{5}}}[/mm]
>  
> Das ist jetzt irgendwie blöd, weil man drei Lösungen
> bekommt von denen zwei einen Komplexen Anteil haben.
> Aber alle anderen Auflösungen sind nicht sehr viel
> angenehmer..
>
> Habe ich irgendwas übersehen oder falsch
> aufgelöst/eingesetzt??
> Oder benutzt man hier nicht die Tatsache, dass eine dritte
> Wurzel drei Lösungen ergibt und benutzt nur die eine
> Lösung (-1,1696..) die der Taschenrechner ausgibt?


Man nimmt hier nur die reelle Zahl, also die Zahl,
die der Taschenrechner ausgibt.



>  Dann ist noch die Frage wie man die Art des Extremwertes
> rausfinden, also ob er global oder lokal ist?
>  
>  


Die Art des Extremums bestimmt man mit Hilfe der []Hesse-Matrix.


Gruss
MathePower

Bezug
                
Bezug
Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Mi 23.06.2010
Autor: steem

Ich habe deine Hinweise mal angewendet und habe jetzt zwei Kandidaten für Extrema raus.

[mm] P_{1}=(-1,85/1,16) [/mm]
[mm] P_{2}=(0/2) [/mm]

Und damit durch die Hessematrix zwei Sattelpunkte. Kann das  sein?

[mm] H_{f(-1,85/1,16)}=\vmat{ -6 & 12 \\ 12 & 0 } [/mm]
[mm] det(H_{f})=-144 [/mm] < 0
-> Sattelpunkt

[mm] H_{f(0/2)}=\vmat{ -3,48 & 9,5868 \\ 9,5868 & -12,876 } [/mm]
[mm] det(H_{f})=-47,09 [/mm] < 0
-> Sattelpunkt

Und jetzt weiß ich immer noch nicht, ob diese Werte nun global oder nur lokal gültig sind. Wie kann man das noch rausfinden?


Bezug
                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mi 23.06.2010
Autor: leduart

Hallo
was ist denn ein globaler gegenüber einem lokalen Sattelpunkt?
Gruss leduart

Bezug
                                
Bezug
Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Fr 25.06.2010
Autor: steem

Wahrscheinlich sind beide Extremwerte gleichwertig?
Was mich wundert ist, dass die zwei Sattelpunkte sehr nah beieinander liegen und wenn ich mir die Funktion mit Maple plotten lasse ist nicht genau zu erkennen, ob dort Sattelpunkte liegen oder nicht.

Bezug
                                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Fr 25.06.2010
Autor: leduart

hallo
Du hast meinen Hinweis nicht verstanden. hat man ein lokales Min kann es leicht Funktionswerte geben, die viel kleiner sind. entsprechend bei nem lokalen max. aber ein Sattel ist ein Sattel, von dem aus gehts in einigen Richtungen rauf, in andere runter. Das Wort global oder lokal ist also nicht angebracht.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]