matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Extremwerte
Extremwerte < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Mal ne dumme Frage
Status: (Frage) beantwortet Status 
Datum: 15:10 Do 19.05.2005
Autor: Sanshine

Wenn ich eine Gleichung mit mehreren Komponenten habe und Extremwerte bestimmen soll, wie mache ich das dann am besten? z.B. beim Bsp. :
f: [mm] \IR^3 \to \IR [/mm] , [mm] f(x,y,z):=(z-1)^2(x^2-y^2-z^2) [/mm]
Ich dachte eigentlich, dass ich einfach die Jakobimatrix aufstelle und gleich Null setze. Dann bekäme ich doch raus:
[mm] \vektor{2(z-1)^2x \\ -2(z-1)^2y \\ 2(z-1)[(x^2-y^2-z^2)-z(z-1)] }= \vektor{0 \\ 0 \\ 0 }, [/mm] also z=1 mit beliebigen x,y und x=0, y=0 und z=0 oder z=0,5
Stimmt wenigstens das so im Ansatz? Wenn ja, kann ich nicht weiter einfach (wie in der Schulmathematik) mit der zweiten Ableitung arbeiten? Reicht das, um aufzuzeigen, dass das Extremwerte sind? Wenn nicht, wie dann?Ich meine, mich zu erinnern, dass irgendwo irgendwann einmal in dem Zusammenhang der Begriff Eigenwerte fiel.
Ich habe keinen Plan und hoffe auf Hilfe.
San
PS: Vielleicht kann mir jemand das ganze am Beispiel von g: [mm] \IR^2 \to \IR, g(x,y):=-(x^2+y^2)(x^2+y^2-1) [/mm] erklären?
Schon mal im Voraus vielen Dank

        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Do 19.05.2005
Autor: Julius

Hallo Sanshine!

Deine Rechung ist richtig; ich habe alles nachgerechnet! [daumenhoch]

Der Ansatz stimmt auch!

Jetzt hast du also die kritischen Punkte berechnet. Du musst dir nun allgemein die Hesse-Matrix in diesen Punkten anschauen (dies ist eine Art  zweite Ableitung im Mehrdimensionalen, wie du es meintest). In ihr stehen die zweiten partiellen Ableitung. In deinem Fall sähe sie so aus:

[mm] $(Hf)(x_0,y_0,z_0):=\pmat{ \frac{\partial^2 f}{\partial x^2}(x_0,y_0,z_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0,y_0,z_0) & \frac{\partial^2 f}{\partial x \partial z}(x_0,y_0,z_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0,y_0,z_0) & \frac{\partial^2 f}{\partial y^2}(x_0,y_0,z_0) & \frac{\partial^2 f}{\partial y \partial z}(x_0,y_0,z_0) \\ \frac{\partial^2 f}{\partial z \partial x}(x_0,y_0,z_0) & \frac{\partial^2 f}{\partial z \partial y}(x_0,y_0,z_0) & \frac{\partial^2 f}{\partial z^2}(x_0,y_0,z_0)}$. [/mm]

Rechne diese Matrix jetzt für deine kritischen Punkte [mm] $(x_0,y_0,z_0)$ [/mm] einmal aus.

Es gilt nun:

1) Ist [mm] $(Hf)(x_0,y_0,z_0)$ [/mm] negativ definit, so hat $f$ in [mm] $(x_0,y_0,z_0)$ [/mm] ein lokales Maximum.
2) Ist [mm] $(Hf)(x_0,y_0,z_0)$ [/mm] positiv definit, so hat $f$ in [mm] $(x_0,y_0,z_0)$ [/mm] ein lokales Minimum.
3) Ist [mm] $(Hf)(x_0,y_0,z_0)$ [/mm] indefinit, so hat $f$ in [mm] $(x_0,y_0,z_0)$ [/mm] kein lokales Extremum, sondern einen Sattelpunkt.

Bei positiver oder negativer Semidefinitheit kann man keine Aussage machen.

Du findest alles Wichtige dazu (mit Beispielen) []hier.

Viele Grüße
Julius

Bezug
                
Bezug
Extremwerte: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:03 Do 19.05.2005
Autor: Sanshine

Vielen Dank. Muss mal sehen, ob ich das alles auch wirklich so fertig gerechnet bekommen, aber ich versuchs [grins]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]