matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte
Extremwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mo 25.05.2009
Autor: mathestuden

Aufgabe
Zu bestimmen die relativen und absoluten Extrema der Funktion[mm]f(x,y)=3x(1-y^2)-x^3[/mm] im Bereich [mm] x^2+y^2\le4[/mm].

Folgendes habe ich bisher gerechnet:

[mm]f(x,y)=3x(1-y^2)-x^3[/mm]

<=> [mm]f(x,y)=3x-3xy^2-x^3[/mm]

=> [mm] Dxf=3-3y^2-3x^2[/mm] und [mm]Dyf=-6xy[/mm]

=> [mm]\begin{pmatrix} 3-3y^2-3x^2 \\ -6xy \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}[/mm]

<=> [mm]\begin{pmatrix} x^2+y^2 \\ xy\end{pmatrix}=\begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}[/mm]

Danach habe ich eine Fallunterscheidung gemacht.

Fall 1:

Wenn x=0

=> y=1
Fall 2:

Wenn y=0

=> x=1

Dann waere der 1.Fall ein relatives Extremum und der 2.Fall ein absolutes, weil ||f(1,0)||=2>||f(0,1)||=0

Ist meine Idee richtig?

Gruss

mathestudent


        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mo 25.05.2009
Autor: fred97


> Zu bestimmen die relativen und absoluten Extrema der
> Funktion[mm]f(x,y)=3x(1-y^2)-x^3[/mm] im Bereich [mm]x^2+y^2\le4[/mm].
>  Folgendes habe ich bisher gerechnet:
>  
> [mm]f(x,y)=3x(1-y^2)-x^3[/mm]
>  
> <=> [mm]f(x,y)=3x-3xy^2-x^3[/mm]
>  
> => [mm]Dxf=3-3y^2-3x^2[/mm] und [mm]Dyf=-6xy[/mm]
>
> => [mm]\begin{pmatrix} 3-3y^2-3x^2 \\ -6xy \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}[/mm]
>  
> <=> [mm]\begin{pmatrix} x^2+y^2 \\ xy\end{pmatrix}=\begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}[/mm]
>  
> Danach habe ich eine Fallunterscheidung gemacht.
>  
> Fall 1:
>  
> Wenn x=0
>  
> => y=1

Nein, es folgt: $y = [mm] \pm [/mm] 1$




>  Fall 2:
>  
> Wenn y=0
>  
> => x=1



Nein, es folgt: $x = [mm] \pm [/mm] 1$

>  
> Dann waere der 1.Fall ein relatives Extremum und der 2.Fall
> ein absolutes, weil ||f(1,0)||=2>||f(0,1)||=0
>  
> Ist meine Idee richtig?



Nein, was sollen oben die Normstriche ?????


Tipp: Hessematrix

FRED

>  
> Gruss
>  
> mathestudent
>  


Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Mo 25.05.2009
Autor: mathestuden

Also ich schaetze, dass das plusminus wegen dem wurzelziehen kommt und wichtig ist um deine Hesse Matrix aufzuspannen. Ist die Hessematrix die approximierte lineare Abbildung von f(x,y) und wie unterscheide ich dann, ob das Extremum lokal oder relativ ist?

Gruss

mathestudent

Bezug
                        
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Mo 25.05.2009
Autor: fred97


> Also ich schaetze, dass das plusminus wegen dem
> wurzelziehen kommt

Ja


> und wichtig ist um deine Hesse Matrix


die gehört nicht mir  ....

>

> aufzuspannen. Ist die Hessematrix die approximierte lineare
> Abbildung von f(x,y)?


Nein. Den Begriff Hessematrix hattet Ihr sicher. Schau noch mal nach

FRED

Bezug
                                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:40 Di 26.05.2009
Autor: mathestuden

Also ich habe mal in meinem Skript geschaut. Dort ist mit keinem Wort die Hesse-Matrix erwähnt (also nur indirekt). Aber ich habe mal bei Wikipedia geschaut unter dem besagten Stichwort. Muss ich die Determinante für die Matrix als hinreichendes Kriterium nehmen oder die Eigenwerte? Muss ich ableiten bis ich 0 heraus bekomme? Inwiefern muss ich meine Fallunterscheidung einbringen? Mir ist das Verfahren nicht ganz klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]