matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwerte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte
Extremwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Sa 01.02.2014
Autor: lalissy

Aufgabe
Bestimmen Sie die relativen Extremwerte der folgenden Funktion:

z=xy-27(1/x-1/y)

Ich habe bereits die partielle Differentiation:
[mm] fx=y+27/x^2 [/mm]
[mm] fy=x-27/y^2 [/mm]

Nun habe ich Probleme Die Nullstellen der Ableitungen zu finden, die ich benötige um die Punkte zu bestimmen, an denen evt. ein Extremwert liegt -.-



        
Bezug
Extremwerte: umstellen & einsetzen
Status: (Antwort) fertig Status 
Datum: 21:15 Sa 01.02.2014
Autor: Loddar

Hallo lalissy!

Wir haben also:

[mm] $y+\bruch{27}{x^2} [/mm] \ = \ 0$

[mm] $x-\bruch{27}{y^2} [/mm] \ = \ 0$

Forme z.B. die zweite Gleichung nach $x \ = \ ...$ umn und setze in die erste Gleichung ein.


Gruß
Loddar

Bezug
                
Bezug
Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Sa 01.02.2014
Autor: lalissy

ja das dachte ich mir auch,danke :3
aber dann scheiterts glaube ich am weiter rechnen..

[mm] x=\bruch{27}{y^2} [/mm]
eingesetzt: [mm] y+\bruch{27}{(\bruch{27}{y^2})^2}=0 [/mm]
irgendwann komme ich dann auf: [mm] y+\bruch{y^4}{27}=0 [/mm]

und dann gehts gar nicht mehr weiter o.O

Danke schonmal,
Lissy

Bezug
                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Sa 01.02.2014
Autor: Richie1401

Hallo,

> ja das dachte ich mir auch,danke :3
> aber dann scheiterts glaube ich am weiter rechnen..
>
> [mm]x=\bruch{27}{y^2}[/mm]
>  eingesetzt: [mm]y+\bruch{27}{(\bruch{27}{y^2})^2}=0[/mm]
>  irgendwann komme ich dann auf: [mm]y+\bruch{y^4}{27}=0[/mm]

hier könntest du durch y teilen, angenommen [mm] y\not=0. [/mm]

Dann bekommst du: [mm] \frac{y^3}{27}=-1\Rightarrow [/mm] $y=-3$

>  
> und dann gehts gar nicht mehr weiter o.O
>
> Danke schonmal,
>  Lissy


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]