matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwertaufgaben
Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben: Problem bei 2 Aufgaben
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 26.08.2006
Autor: Salino

Aufgabe
1. Aus einem zylindischen Baumstamm vom Durchmesser 0,12m soll ein Balken mit rechteckigem Querschnitt und von größter Tragfähigkeit geschnitten werden.
Die Tragfähigkeit ist zur Breite und zum Quadrat der Höhe proportional.

2) EIn Behälter soll die Form einer quadratischen Säule erhalten:
a) Die Oberfläche soll 200dm² betragen. Welcher der möglichen Körper hat maximales Volumen?
b)Das Volumen der Säule soll 200dm³ betragen. 1dm² des Materials für die Stand- und Deckfläche kostet 4 DM, 1dm² des Materials für die seitenfläche kostet 5DM. Welcher der möglichen BEhälter verursacht die geringsten Materialkosten.

Zu1)
So hier mal meine Ansäzte:

t(b,h) = k (konstante) * b * h²

An einer Skizze sieht man dann, dass man den Satz des Pytagoras anwenden muss ( d² = h² + b² ). So kommt man auf:

t(b) = k * b * (d²-b²) <=> t(b) = k*b*d²-k*b³

t'(b) = kd²-3kb²

Meine Idee ist hier, die Ableitung in die Scheitelpunktform einer Normalparabel zu bringen, aber dazu bin ich tatsächlich zu doof, weil da ein Minuszeichen ist.


Zu2) V=max= [mm] a^2 [/mm] * b; [mm] O=2a^2 [/mm] + 4ab
Weiter bin ich leider nicht gekommen. Hatte mal als ergebnis, dass es ein Würfel ist. Aber das kommt mir einfach zu easy vor.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: Matheboard.de

        
Bezug
Extremwertaufgaben: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:12 Sa 26.08.2006
Autor: Zwerglein

Hi, Salino,

> 1. Aus einem zylindischen Baumstamm vom Durchmesser 0,12m
> soll ein Balken mit rechteckigem Querschnitt und von
> größter Tragfähigkeit geschnitten werden.
>  Die Tragfähigkeit ist zur Breite und zum Quadrat der Höhe
> proportional.
>  
>
> t(b,h) = k (konstante) * b * h²
>  
> An einer Skizze sieht man dann, dass man den Satz des
> Pytagoras anwenden muss ( d² = h² + b² ). So kommt man
> auf:
>  
> t(b) = k * b * (d²-b²) <=> t(b) = k*b*d²-k*b³
>  
> t'(b) = kd²-3kb²

Warum ersetzt Du d nicht durch die gegebene Zahl 0,12?
Dann würdest Du Dir leichter tun:

t'(b) = 0,0144*k - [mm] 3k*b^{2} [/mm]

Nun musst Du ja t'(b) =0 setzen und nach b auflösen!
Wozu brauchst Du da die Scheitelform?

mfG!
Zwerglein



Bezug
        
Bezug
Extremwertaufgaben: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 13:10 So 27.08.2006
Autor: Zwerglein

Hi, Salino,

alles klar mit Aufgabe 1 ?

Dann ein Tipp zu Aufgabe 2:

> 2) EIn Behälter soll die Form einer quadratischen Säule
> erhalten:
>  a) Die Oberfläche soll 200dm² betragen. Welcher der
> möglichen Körper hat maximales Volumen?
>  b)Das Volumen der Säule soll 200dm³ betragen. 1dm² des
> Materials für die Stand- und Deckfläche kostet 4 DM, 1dm²
> des Materials für die seitenfläche kostet 5DM. Welcher der
> möglichen BEhälter verursacht die geringsten
> Materialkosten.

> Zu2) V=max= [mm]a^2[/mm] * b; [mm]O=2a^2[/mm] + 4ab
>  Weiter bin ich leider nicht gekommen. Hatte mal als
> ergebnis, dass es ein Würfel ist. Aber das kommt mir
> einfach zu easy vor.

Ne, ne! Das ist schon die richtige Lösung für 2a!

Nun aber zu 2b:
Hier geht's ja um die Kosten (K).

Daher: K = [mm] 4*2a^{2} [/mm] + 5*4ab

Die Nebenbedingung  ist hier: [mm] a^{2}*b [/mm] = 200.

Schaffst Du "den Rest" alleine?

mfG!
Zwerglein
  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]