matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe mit Gefäßen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwertaufgabe mit Gefäßen
Extremwertaufgabe mit Gefäßen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe mit Gefäßen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Mo 12.09.2011
Autor: Green_Apple_2

Aufgabe
Es soll ein prismenförmiges Gefäß bzw. ein zylindirsches Gefäß aus beliebigem Material mit einem Volumen von 23 Litern hergestellt werden. Dabei möchte man den Materialsverbrauch möglich gering halten. Sollte man sich nun für das Gefäß in Form eines oben offenen quadratischen Prismas oder in Form eines offenen Zylinders entscheiden?

Meine Frage ist nun:
Ich habe bei beiden die Hauptbedingung und die Nebenbedingung aufstellt: HB = Oberfläche NB: Volumen.
Mein Problem ist nun, dass ich beim Ableiten einfach nicht weiterkomme!

HB: 2*r*PI*h+r²*PI

NB: (32/PI*h)=r2 -> in HB einfügen

->2*r*PI*h+(32/PI*h)*PI

Und nun habe ich schon das Problem:
Wie soll ich das ganze Ableiten (also 0 setzten), wenn es keine Hochzahlen gibt.
Beim Ergebnis würde dann Null rauskommen!
Kann das stimmen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe mit Gefäßen: nebenbei: ? "Hauptbedingung" ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 Di 13.09.2011
Autor: Al-Chwarizmi

Hallo [mm] Green_Apple_2 [/mm] ,

inhaltlich wird bestimmt bald jemand antworten.
Mir geht es hier nur um eine Ausdrucksweise.

Schon oft habe ich mich gefragt, weshalb in Extremal-
aufgaben so oft von einer "Hauptbedingung" gesprochen
und geschrieben wird. Meiner Ansicht nach ist dies ziemlich
unsinnig.
In der vorliegenden Aufgabe geht es, wie so oft in
ähnlichen Aufgaben, darum, eine gewisse Oberfläche
zu minimieren unter der Bedingung (oder "Nebenbedingung"),
dass ein Volumen einen vorgegebenen konstanten Wert
haben soll.
Die zu minimierende Oberfläche ist dabei die Zielgröße
(bzw. die Zielfunktion) der Extremwertaufgabe.

Irgendwelche "ganzheitlich orientierten" Geister muss es
gestört haben, dass in solchem Zusammenhang zwar von
"Nebenbedingungen" die Rede war, aber nicht von einer
"Hauptbedingung" - und die haben dann die seltsame
Praxis begründet, statt von einer zu optimierenden
Größe oder Zielgröße von einer "Hauptbedingung" zu sprechen.

Wenn man dieses Wort schon verwenden will, kann es
aber bestimmt nicht für die Zielgröße selber und auch
nicht für eine Gleichung stehen, welche diese durch die
Variablen ausdrückt, sondern für die Forderung, dass
diese Zielgröße z.B. einen minimalen Wert annehmen soll
.

LG   Al-Chw.



Bezug
        
Bezug
Extremwertaufgabe mit Gefäßen: Korrekturen
Status: (Antwort) fertig Status 
Datum: 05:00 Di 13.09.2011
Autor: Loddar

Hallo Green Aplle,

[willkommenmr] !!


> HB: 2*r*PI*h+r²*PI

Besser: [mm]\red{O(r,h) \ =} \ 2*\pi*r*h+\pi*r^2[/mm]


> NB: (32/PI*h)=r2 -> in HB einfügen

Ist nun [mm]V \ = \ 32[/mm] oder [mm]V \ = \ 23[/mm] korrekt?
Zudem wird es deutöich einfacher, wenn Du die Nebenbedingung nach [mm]h \ = \ ...[/mm] umstellst.


> ->2*r*PI*h+(32/PI*h)*PI

Wieder besser: [mm]\red{O(h) \ =} \ 2*\pi*r*h+\bruch{32}{\pi*h}*\pi[/mm]

Auf jeden Fall zu beachten ist jedoch, dass Du jedes [mm]r_[/mm] durch [mm]h_[/mm] ersetzen musst, also auch das [mm]r_[/mm] im ersten Term, damit nur noch eine Variable verbleibt.

Daher obigen Tipp zur Nebenbedingung anwenden.


> Und nun habe ich schon das Problem:
> Wie soll ich das ganze Ableiten (also 0 setzten), wenn es
> keine Hochzahlen gibt.

Das verstehe ich nicht, was Du meinst.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]