matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExtremwertaufgabe? e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Extremwertaufgabe? e-Funktion
Extremwertaufgabe? e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe? e-Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:35 Sa 07.02.2009
Autor: tine26

Aufgabe
Zeigen Sie das f''k(1)>0 genau dann gilt, wenn k>1/6 ist, und folgern Sie mittels des Ergebnisses aus Aufgabe c (die Graphen aller Funktionen f k schneiden die Gerade x=y senkrecht an der Stelle 1), dass für k>1/6 der Punkt (1/1) ein Punkt des Funktionsgraphen von f k mit minimaler Entfernung zum Koordinatenursprung ist. (fk(x)= [mm] (kx³-3kx+2k+1)*e^{-x+1}) [/mm]

Und noch eine aufgabe bereitet mir Kopfzerbrechen.

Nachgewiesen habe ich die Behauptung. Habe anschließend hin und her überlegt, welche Schlussfolgerung zu ziehen ist, aber so richtig ist mir nichts eingefallen. Klar erscheint, 1/1 ist ein Punkt auf dem graphen f k und auch auf der Funktion x=y, die bekannterweise durch 0/0 verläuft. Da wäre somit ein Schnittpunkt bei 1/1. Da hören jedoch meine Überlegungen auch schon auf.

Es wäre lieb, wenn mir jemand einen Tipp geben würde, ob ich in die richtige Richtung denke und wie man weiter vorgehen könnte.

VG tine

        
Bezug
Extremwertaufgabe? e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Sa 07.02.2009
Autor: abakus


> Zeigen Sie das f''k(1)>0 genau dann gilt, wenn k>1/6 ist,
> und folgern Sie mittels des Ergebnisses aus Aufgabe c (die
> Graphen aller Funktionen f k schneiden die Gerade x=y
> senkrecht an der Stelle 1), dass für k>1/6 der Punkt (1/1)
> ein Punkt des Funktionsgraphen von f k mit minimaler
> Entfernung zum Koordinatenursprung ist. (fk(x)=
> [mm](kx³-3kx+2k+1)*e^{-x+1})[/mm]
>  Und noch eine aufgabe bereitet mir Kopfzerbrechen.
>  
> Nachgewiesen habe ich die Behauptung. Habe anschließend hin
> und her überlegt, welche Schlussfolgerung zu ziehen ist,
> aber so richtig ist mir nichts eingefallen. Klar erscheint,
> 1/1 ist ein Punkt auf dem graphen f k und auch auf der
> Funktion x=y, die bekannterweise durch 0/0 verläuft. Da
> wäre somit ein Schnittpunkt bei 1/1. Da hören jedoch meine
> Überlegungen auch schon auf.

Hallo,
der Punkt (1|1) soll also der mit dem kürzesten Abstand zum Ursprung sein?
Also, alle Punkte, die vom Ursprung den gleichen Abstand haben wie (1|1), liegen auf einem Kreis. Wenn man sich auf diesem Kreis ("geradeaus") bewegt, hat man während dieser Bewegung immer eine seitliche Ablenkung zum Mittelpunkt hin.
Ohne es nachgerechnet zu haben vermute ich mal, dass deine Kurve gerade ein entgegengesetztes Krümmungsverhalten hat.
Das Krümmungsverhalten eines Kurvenstücks wird durch die Begriffe "konvex" und "konkav" (bzw. Links- oder Rechtskurve) beschrieben. Welche Art gerade vorliegt, wird durch das Vorzeichen der 2. Ableitung im jeweiligen Bereich vorgegeben.
Gruß Abakus


>
> Es wäre lieb, wenn mir jemand einen Tipp geben würde, ob
> ich in die richtige Richtung denke und wie man weiter
> vorgehen könnte.
>  
> VG tine  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]