matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtremwertaufgabe/ Kostenfkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Extremwertaufgabe/ Kostenfkt
Extremwertaufgabe/ Kostenfkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe/ Kostenfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Sa 04.09.2004
Autor: BahrJan

Moin Zusammen!
Ich habe schon wieder eine Aufgabe, die ich nicht richtig lösen kann.

Die variablen Kosten einer Produktion in Abhänigkeit des produzierten Outputs sind gegeben durch [mm] K_v _(x)= 0,02x^2[/mm]
Bei x = 100 Mengeneinheiten enstehen Gesamtkosten von 232 €.
a) Geben Sie die Gesamtkosten- und die Stückkostenfunktion an.
b) Bei welchem Output operiert das Unternehmen im Bertiebsoptimum, d.h. wo liegen die minimalen Stückkosten?

Lösungsvorschlag:
a) Duch einsetzten von X = 100 in [mm] K_v [/mm] erhält man die Variablen Kosten für 100 Stück. = 200 € Variable Kosten.
Da die Gesamtkosten aus Variabelenkosten + Fixkosten bestehen, müssen also die Fixkosten 32 € sein. Richtig?
Die Gesamtkostenfunktion muss also [mm] K_{(x)} = 0,02x^2 +32[/mm]
lauten oder?
Die Stückkosten werden errechnet indem man die Gesamtkosten durch die Menge dividiert, also durch x teilt.
Die Stückkostenfunktion müsste dann doch [mm] k_{(x)}=0,02x+\bruch {32} {x} [/mm] sein oder?
Die minimalen Stückkosten bekommt man nun durch 1. und 2. Ableitung der Stückkostenfunktion herraus.
1. Ableitung: [mm] k'_{(x)}= 0,02+\bruch {32} {x^2}=0 [/mm] richtig?
2. Ableitung: [mm] k''_{(x)}= \bruch {32} {x^3}>0[/mm] richtig?
Wenn das stimmen sollte, kann ich es trotzdem nicht rechnen.

Aus dem VWL Unterricht weiß ich aber, dass  die erste Ableitung der Gesamtkosten  [mm] K'[/mm] die Stückkosten  im Minimum von [mm] k_{(x)}[/mm] schneidet.
Daher kann ich diese beiden Funktionen gleichsetzten und habe auch das Ergebnis. Ich bekomme dann x= 40 für das Betriebsoptimum raus. Ist das richtig?
So ist der Rechenweg wohl aber nicht von den Professoren gewollt.
Kann mir jemand das Minimum der o.A. Stückkostenfunktion mit Rechenweg ausrechen?
Vieleicht würde ich für meine Lösungsversuch ja noch ein paar Trostpunke bekommen. ;-)
Danke schon mal an die edlen Helfer!

Gruß
Jan
Ich habe die Frage in keinem anderen Forum gestellt.

        
Bezug
Extremwertaufgabe/ Kostenfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Sa 04.09.2004
Autor: xquadrat

wie wärs mit einem " - " in der ersten ableitung?
vielleicht reicht dir der tipp ja schon ; )

Bezug
        
Bezug
Extremwertaufgabe/ Kostenfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Sa 04.09.2004
Autor: BahrJan

ich glaube das " - " muss vor die fixen Kosten.
trotzdem komme ich nicht weiter

danke erst mal dafür

Bezug
        
Bezug
Extremwertaufgabe/ Kostenfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 So 05.09.2004
Autor: Marc

Hallo Jan!

> Die variablen Kosten einer Produktion in Abhänigkeit des
> produzierten Outputs sind gegeben durch [mm]K_v _(x)= 0,02x^2[/mm]
>  
> Bei x = 100 Mengeneinheiten enstehen Gesamtkosten von 232
> €.
>  a) Geben Sie die Gesamtkosten- und die Stückkostenfunktion
> an.
>  b) Bei welchem Output operiert das Unternehmen im
> Bertiebsoptimum, d.h. wo liegen die minimalen
> Stückkosten?
>  
> Lösungsvorschlag:
>  a) Duch einsetzten von X = 100 in [mm]K_v[/mm] erhält man die
> Variablen Kosten für 100 Stück. = 200 € Variable Kosten.
>  Da die Gesamtkosten aus Variabelenkosten + Fixkosten
> bestehen, müssen also die Fixkosten 32 € sein. Richtig?

[ok]

>  Die Gesamtkostenfunktion muss also [mm]K_{(x)} = 0,02x^2 +32[/mm]
>
> lauten oder?

[ok]

>  Die Stückkosten werden errechnet indem man die
> Gesamtkosten durch die Menge dividiert, also durch x
> teilt.

[ok]

>  Die Stückkostenfunktion müsste dann doch
> [mm]k_{(x)}=0,02x+\bruch {32} {x}[/mm] sein oder?

[ok]

>  Die minimalen Stückkosten bekommt man nun durch 1. und 2.
> Ableitung der Stückkostenfunktion herraus.
>  1. Ableitung: [mm]k'_{(x)}= 0,02+\bruch {32} {x^2}=0[/mm]
> richtig?

[notok]
Die Ableitung müßte lauten: [mm]k'(x)= 0,02\red{-}\bruch{32}{x^2}[/mm]
Diese setzt du nun gleich Null (das ist die notwendige Bedinung für Extremstellen):

$k'(x)=0$
[mm] $\gdw$ $0,02-\bruch{32}{x^2}=0$ [/mm]  (mit dem Nenner multiplizieren)
[mm] $\gdw$ $0,02x^2-32=0$ [/mm]
[mm] $\gdw$ $0,02x^2=32$ [/mm]
[mm] $\gdw$ $x^2=1600$ [/mm]
[mm] $\Rightarrow$ [/mm] $x=40$

>  2. Ableitung: [mm]k''_{(x)}= \bruch {32} {x^3}>0[/mm] richtig?

Nein, diese Ableitung ist nun ganz falsch :-)
Es war:
[mm] $k'(x)=0,02-\bruch{32}{x^2}=0,02-32*x^{-2}$ [/mm]
[mm] $\Rightarrow$ $k''(x)=64*x^{-3}=\bruch{64}{x^3}$ [/mm]

Nun mußt du noch $k''(40)$ berechnen und zeigen, dass $k''(40)>0$ gilt.
Dann hat k an der Stelle $x=40$ ein Minimum.

>  Wenn das stimmen sollte, kann ich es trotzdem nicht
> rechnen.
>  
> Aus dem VWL Unterricht weiß ich aber, dass  die erste
> Ableitung der Gesamtkosten  [mm]K'[/mm] die Stückkosten  im Minimum
> von [mm]k_{(x)}[/mm] schneidet.
>  Daher kann ich diese beiden Funktionen gleichsetzten und
> habe auch das Ergebnis. Ich bekomme dann x= 40 für das
> Betriebsoptimum raus. Ist das richtig?

Das Ergebnis ist richtig, obwohl ich den Zusammenhang zwischen Gesamtkosten und Stückkostenminimum nicht beurteilen kann.

>  So ist der Rechenweg wohl aber nicht von den Professoren
> gewollt.
>  Kann mir jemand das Minimum der o.A. Stückkostenfunktion
> mit Rechenweg ausrechen?

Hab' ich gemacht!

Viele Grüße,
Marc

Bezug
                
Bezug
Extremwertaufgabe/ Kostenfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Mi 08.09.2004
Autor: BahrJan

Vielen Dank Mark!

Mit Ableitungen habe ich noch so meine Probleme, besonders wenn man mehrere Regeln kombinieren  muss. (Hier ja nicht)

Wenn man sich den Rechenweg anschaut, ist es ja gar nicht so schwer.
Man muss bloß erstmal draufkommen.

Danke nochmal

Gruß
Jan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]