matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage
Status: (Frage) beantwortet Status 
Datum: 21:17 Mo 22.08.2005
Autor: Mari

Hallo, ich komme bei nachfolgender Aufgabe nicht weiter. Ich weiß nicht, ob vielleicht auch mein Ansatz falsch ist?!

geg.: f(x)= (x²-4)/(x+3), x >3, das Schaubild der Funktion sei K

ges.: K und die x-Achse umschließen unterhalb der x-Achse eine Fläche. In diese soll ein Rechteck größten Inhalts einbeschrieben werden, dessen eine Seite auf der x-Achse liegt. Auch die Koordinaten seiner Ecken sollen angegeben werden.

Mein Ansatz:
Nebenbedingung: 2 Eckpunkte des Rechtecks müssen auf der Kurve liegen. Der Punkt auf der Kurve im 4. Quadranten sei P(u/v) mit v=f(u).
Damit gilt für die Höhe h=f(u).
Für dieses Rechteck ist die Grundseite u, mit 0 [mm] \le [/mm] u  [mm] \le [/mm] 2, da  [mm] \pm2 [/mm] die Nullstellen sind.
Durch Einsetzen der Nebenbedingung ergibt sich als Zielfunktion für die Fläche: A(u)= u [mm] \*f(u), [/mm] also A(u)= u [mm] \* [/mm] |(u²-4)/(u+3) | (die Betragsstriche, da sich die Fläche im negativen Bereich befindet), daraus folgt dann
A(u)= |(u³-4u)/(u+3) |
Definitionsmenge ist -2 <u <2, aufgrund der Nullstellen.Die Ableitungen von A(u): A´(u)= |(2u³+9u²-12)/(u+3)² |
A´´(u)= |(2(u³+9u²+27u+12)/(u+3)³ |
Ich dachte ich müsste nun die erste Ableitung gleich Null setzen. Doch da bekomme ich kein anständiges Ergebnis.

Ich hoffe jemand kann mir weiterhelfen. Vielen Dank im Voraus. Eure Mari
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Mo 22.08.2005
Autor: Christian

Hallo.

> Hallo, ich komme bei nachfolgender Aufgabe nicht weiter.
> Ich weiß nicht, ob vielleicht auch mein Ansatz falsch
> ist?!
>  
> geg.: f(x)= (x²-4)/(x+3), x >3, das Schaubild der Funktion
> sei K
>  
> ges.: K und die x-Achse umschließen unterhalb der x-Achse
> eine Fläche. In diese soll ein Rechteck größten Inhalts
> einbeschrieben werden, dessen eine Seite auf der x-Achse
> liegt. Auch die Koordinaten seiner Ecken sollen angegeben
> werden.
>  
> Mein Ansatz:
>  Nebenbedingung: 2 Eckpunkte des Rechtecks müssen auf der
> Kurve liegen. Der Punkt auf der Kurve im 4. Quadranten sei
> P(u/v) mit v=f(u).
>  Damit gilt für die Höhe h=f(u).

[daumenhoch]

>  Für dieses Rechteck ist die Grundseite u

[notok] da liegt der Hund begraben...
$u_$ ist die x-Koordinate des sagen wir linken unteren Eckpunkts für unser Rechteck.
Es muß notwendigerweise noch eine Stelle $w_$ geben mit $w>u$ und $f(w)=f(u)$.
Die Grundseite des Rechtecks ist dann $w-u_$ und nicht $u_$.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]