Extremwertaufgabe < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:10 So 18.07.2010 | Autor: | mileu |
Aufgabe | Wie groß ist der kürzeste Abstand [mm] \overrightarrow{P_1P_2} [/mm] der Fläche [mm] $F_1: 4x^{2} [/mm] + [mm] y^{4} [/mm] + 16z = 0$ von der Fläche [mm] $F_2: [/mm] 2x + y + 4z -12 = 0 , [mm] P_1 \in F_1, P_2 \in F_2$ [/mm] ?
Hinweise:
1) [mm] $P_1$ [/mm] sei $(x,y,z)$ und [mm] $P_2$ [/mm] sei $(u,v,w)$.
2) Es gibt keine Schnittpunkte |
Hallo an alle,
meine herangehensweise ist folgende.
Um den Vektor [mm] \overrightarrow{P_1P_2} [/mm] zu bekommen mach ich
[mm] $P_2 [/mm] - [mm] P_1$ [/mm] und nehme davon den Betrag zum Quadrat um leichter abzuleiten.
[mm] |\vektor{ u - x \\ v - y \\ w - z}|^{2} [/mm] = (u - [mm] x)^{2} [/mm] + (v - [mm] y)^{2} [/mm] + (w - [mm] z)^{2} [/mm]
Dies wäre also meine Hauptbedingung, mit den Nebenbedingungen [mm] F_1 [/mm] und [mm] F_2.
[/mm]
Jetzt kommt die Stelle an der ich mir unsicher bin. Und zwar wie Lautet die zu untersuchende Funktion?
Ich hab schon so etwas ausprobiert:
1) [mm] $H(x,y,z,u,v,w,\lambda,\mu) [/mm] = (u - [mm] x)^{2} [/mm] + (v - [mm] y)^{2} [/mm] + (w - [mm] z)^{2} [/mm] + [mm] \lambda (4x^{2} [/mm] + [mm] y^{4} [/mm] + 16z) + [mm] \mu [/mm] (2u + v + 4w -12)$
Hab auch schon die Methode ausprobiert:
2) [mm] $H(x,y,z,u,v,w,\lambda,\mu) [/mm] = (u - [mm] x)^{2} [/mm] + (v - [mm] y)^{2} [/mm] + (w - [mm] z)^{2} [/mm] + [mm] \lambda (4x^{2} [/mm] + [mm] y^{4} [/mm] + 16z) + [mm] \mu [/mm] (2x + y + 4z -12)$
Im ersten Fall bekomme ich auch zwei Punkte heraus, und kann somit einen Vektor aufstellen und die länge berechnen, aber würde das auch stimmen?
Im zweiten fall bekomme ich nur Werte für x y z, könnte das dann schon der gesuchte Vektor sein?
Hab leider keine Musterlösung für diese Aufgabe und bitte hier jeden um Rat. =)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:40 So 18.07.2010 | Autor: | abakus |
> Wie groß ist der kürzeste Abstand [mm]\overrightarrow{P_1P_2}[/mm]
> der Fläche [mm]F_1: 4x^{2} + y^{4} + 16z = 0[/mm] von der Fläche
> [mm]F_2: 2x + y + 4z -12 = 0 , P_1 \in F_1, P_2 \in F_2[/mm] ?
> Hinweise:
> 1) [mm]P_1[/mm] sei [mm](x,y,z)[/mm] und [mm]P_2[/mm] sei [mm](u,v,w)[/mm].
> 2) Es gibt keine Schnittpunkte
> Hallo an alle,
>
> meine herangehensweise ist folgende.
>
> Um den Vektor [mm]\overrightarrow{P_1P_2}[/mm] zu bekommen mach ich
>
> [mm]P_2 - P_1[/mm] und nehme davon den Betrag zum Quadrat um
> leichter abzuleiten.
>
> [mm]|\vektor{ u - x \\ v - y \\ w - z}|^{2}[/mm] = (u - [mm]x)^{2}[/mm] + (v
> - [mm]y)^{2}[/mm] + (w - [mm]z)^{2}[/mm]
>
> Dies wäre also meine Hauptbedingung, mit den
> Nebenbedingungen [mm]F_1[/mm] und [mm]F_2.[/mm]
>
> Jetzt kommt die Stelle an der ich mir unsicher bin. Und
> zwar wie Lautet die zu untersuchende Funktion?
>
> Ich hab schon so etwas ausprobiert:
>
> 1) [mm]H(x,y,z,u,v,w,\lambda,\mu) = (u - x)^{2} + (v - y)^{2} + (w - z)^{2} + \lambda (4x^{2} + y^{4} + 16z) + \mu (2u + v + 4w -12)[/mm]
>
> Hab auch schon die Methode ausprobiert:
>
> 2) [mm]H(x,y,z,u,v,w,\lambda,\mu) = (u - x)^{2} + (v - y)^{2} + (w - z)^{2} + \lambda (4x^{2} + y^{4} + 16z) + \mu (2x + y + 4z -12)[/mm]
>
> Im ersten Fall bekomme ich auch zwei Punkte heraus, und
> kann somit einen Vektor aufstellen und die länge
> berechnen, aber würde das auch stimmen?
>
> Im zweiten fall bekomme ich nur Werte für x y z, könnte
> das dann schon der gesuchte Vektor sein?
>
> Hab leider keine Musterlösung für diese Aufgabe und bitte
> hier jeden um Rat. =)
Hallo,
ich möchte nur eine geometrische Anmerkung machen.
Die zweite Fläche ist eine Ebene. Wenn du diese in Richtung ihres Normalenvektors verschiebst und dabei auf die erste Fläche zubewegst, wird sie irgendwann einen ersten Punkt deiner ersten Fläche als Tangentialebene berühren.
Ich würde also zunachst nach Punkten der Ebene 1 suchen, die den gleichen (bzw. gleich gerichteten) Normalenvektor wie die Ebene 2 besitzen.
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:47 So 18.07.2010 | Autor: | mileu |
Hallo,
erstmal danke für die schnelle Antwort. Ich versteh aber nicht ganz, in welcher hinsicht mich das weiterbringt. Möchte ja keine Schnittpunkte sondern den Abstand haben.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:40 So 18.07.2010 | Autor: | qsxqsx |
Hallo,
Zeichne dir mal aufs Papier einen Berg und irgendwie schräg über der Spitze eine Ebene. Der Berg ist eine Fläche, die Ebene eine. Jetzt suchst du den Kürzesten Abstand. Lässt du die Ebene in Richtung ihres Normalenvektors auf den Berg zufallen, erhälst du den Punkt auf dem Berg, der der Ebene am nächsten ist.
Du hast also nun einen Punkt P auf dem Berg.
Für den Punkt auf der Ebene, bestimmst du den Schnittpunkt von der Gerade [mm] \overrightarrow{g} [/mm] = P + [mm] s*\overrightarrow{n}, [/mm] wobei [mm] \overrightarrow{n} [/mm] der Normalenvektor der Eben ist.
Also zu deiner eigentlichen Frage:
Ich denke, das die erste Variante die Richtige ist.
Weshalb: Es ist doch unlogisch, wenn x,y,z auf zwei Ebenen gleichzeitig sein müssen, die sich nicht einmal schneiden! Für x,y,z gibt es eine Nebenbedingung und für w,u,v eine zweite. Dann macht es keinen sinn in beide Flächen x,y,z einzusetzen.
Gruss
|
|
|
|