matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Xtremwertaufgabe!
Status: (Frage) beantwortet Status 
Datum: 11:59 So 18.02.2007
Autor: michaelssmile

Hallo,
ich bin neu hier und hab das irgendwie noch nicht ausfedeln können wie ich meine aufgabe reinstellen kann,ich hofffe das auch hier jmd mein Hilfeschrei mitbekommt, denn ich hab auch Probleme mit einer Aufgabe und die sieht wie folgt aus:

Aufgabe
Ein Körper is zusammengesetzt aus einem nach oben offenen Zylinder und einer Halbkugel. Die gesamte Oberfläche des Körpers hat die Konstante Größe: 20 (mal) [mm] \pi [/mm] (einheit cm).
Berechnen Sie den Radius und die Höhe des Körpers mit maximalen Volumen.


Bitte helf mir, vielen dank.
lg,
Jasmine


        
Bezug
Extremwertaufgabe: Haupt- und Nebenbedingung
Status: (Antwort) fertig Status 
Datum: 12:24 So 18.02.2007
Autor: Loddar

Hallo Jasmine,

[willkommenmr] !!


Leider schreibst Du nicht, welche Probleme Du mit dieser Aufgabe hast bzw. wieweit Du es alleine geschafft hast.

Typisch für derartige Aufgaben ist es, die Gleichungen für die sogenannte "Hauptbedingung" und die "Nebenbedingung" aufzustellen.

Da hier nach dem maximalen Volumen gesucht ist, ist die Volumenformel dieses Körpers die Hauptbedingung:

$V(r,h) \ = \ [mm] V_{\text{Körper}} [/mm] \ = \ [mm] V_{\text{Zylinder}}+V_{\text{Halbkugel}} [/mm] \ = \ [mm] \pi*r^2*h [/mm] + [mm] \bruch{1}{2}*\bruch{4}{3}*\pi*r^3 [/mm] \ = \ [mm] \pi*r^2*\left(h+\bruch{2}{3}*r\right)$ [/mm]


Die Nebenbedingung wird hier durch den Wert der Oberfläche vorgegeben (dabei interpretiere ich das so, dass hier sowohl die Innen- als auch die Außenfläche gemeint ist):

[mm] $\blue{O_{\text{Körper}}} [/mm] \ = \ [mm] 2*M_{\text{Zylinder}}+2*O_{\text{Halbkugel}} [/mm] \ = \ [mm] 2*M_{\text{Zylinder}}+O_{\text{Kugel}} [/mm] \ = \ [mm] 2*2*\pi*r*h+4*\pi*r^2 [/mm] \ = \ [mm] 4*\pi*r*(h+r) [/mm] \ = \ [mm] \blue{20*\pi}$ [/mm]

Stelle diese Gleichung nun nach $h \ = \ ...$ um und setze dies in die Hauptbedingung ein.

Damit hast Du dann Deine sogenannte "Zielfunktion" $V \ = \ V(r)$ , die nur noch von der Variablen $r_$ abhängig ist. Für dies Funktion ist nunmehr eine Extremwertberechnung durchzuführen (Nullstellen der 1. Ableitung $V'(r)_$ etc.).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]