matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage
Status: (Frage) beantwortet Status 
Datum: 14:59 Fr 29.10.2004
Autor: emma-sofie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe zwei MAtheaufgaben bei denen ich einfach keinen Rechenansatz wie z.B Zielfunktion, Nebenbedingung etc. finde. Vielleicht könnt ihr mir ja helfen.

1) Der Graph der Funktion f(x)= 1/4 [mm] x^4-2 x^2 [/mm]  plus 4 schließt mit der x-Achse eine Fläche ein. WElches dieser Fläche einbeschriebene Rechteck mit achsenparallen Seiten hat extremalen Inhalt?

2.) Ein 2l Gefäß soll aus einer Halbkugel und einem anschließendem oben offenen Zylinder bestehen. WElche Form muß das GEfäß haben, wenn seine Oberfläche möglichst klein sein soll?

Danke für eine Antwort.

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Fr 29.10.2004
Autor: Bastiane

Hallo Emma-Sofie!

Also, zuerst mal zu der Funktion [mm] f(x)=\bruch{1}{4} x^4-2x^2+4. [/mm]
Am besten schaust du dir mal an, wie die Funktion aussieht, und wo das einbeschriebene Rechteck liegt. Falls du kein Programm hast, das dir die Funktion zeichnen kann, ist das allerdings etwas mühsam, selber alles auszurechnen und zu zeichnen, also es ist nicht unbedingt nötig für die Lösung dieser Aufgabe. (Falls du dir ein Matheprogramm anschaffen kannst, ich habe eins von Klett, das heißt Abi-Tour, damit kann man Funktionen zeichnen, und auch mehr oder weniger eine Kurvendiskussion von Funktionen machen und es sind auch Aufgaben gespeichert, die man lösen kann und die der Computer dann "kontrolliert". Natürlich hat das Programm auch seine Grenzen, aber ich kam damit durch den Mathe-LK und durchs Abitur. - Sorry, das soll keine Schleichwerbung sein!)

Und noch ein Tipp vorweg: Bei Extremwertaufgaben sind Flächen mit extremalem Inhalt immer Quadrate oder Kreise, eben "gleichmäßige" Flächen (mir fällt gerade kein besseres Wort dafür ein). Jedenfalls müsstest du als Ergebnis ein Quadrat herausbekommen.

Na, dann wollen wir mal sehen:
Die Fläche eines Rechtecks berechnet man durch die Funktion A=a*b, wobei a und b die Seitenlängen sind. Jetzt musst du dir überlegen, was in deinem Fall a und b ist. Da die Seiten achsenparallel sein sollen, ist a=2x (denn die Funktion ist symmetrisch, und x geht ja immer sozusagen vom Nullpunkt aus nach rechts, bzw. -x nach links, aber du willst ja die komplette Seitenlänge haben, und nicht nur die rechts oder links der x-Achse!)
Übrigens solltest du noch die Nullstellen berechnen, dann weißt du auch, dass [mm] x\in[-2,2] [/mm] sein muss (wenn ich mich nicht verrechnet habe! :-))

Nun musst du dir überlegen, wie die zweite Seitenlänge von der ersten abhängt. Zeichne oder denk dir einfach mal ein paar Seitenlängen a, die genau auf der x-Achse liegen - wie groß kann b dann höchstens sein? Genau! f(x). Also musst du jetzt noch a=2x nach x auflösen, [mm] \gdw x=\bruch{a}{2}, [/mm] und jetzt kannst du einsetzen:
[mm] b=\bruch{1}{4}\left(\bruch{a}{2}\right)^4-2\left(\bruch{a}{2}\right)^2+4 [/mm]
Das kannst du noch etwas vereinfachen.

Dann setzt du das in deiner Formel für den Flächeninhalt, also A=a*b ein, das ist ja deine Funktion, die approximiert werden soll. Du hast b ja in Abhängigkeit von a, wenn du also beides einsetzt, erhältst du eine Funktion A, die nur noch von a abhängt. Diese Funktion leitest du ab, bestimmst die Nullstellen der Ableitung usw. damit du das Extremum dieser Funktion findest.
Und dann müsstest du eigentlich schon fertig sein.

Ich hoffe, das hilft dir weiter - falls du zwischendrin Probleme haben solltest, schreib ruhig nochmal, aber dann mit ein paar Zwischenergebnissen und deinen genauen Problemen.
Und die zweite Aufgabe probierst du vielleicht auch noch mal alleine.

(Solltest du allerdings das Prinzip von Extremwertaufgaben noch nicht verstanden haben, wäre ein einfacheres Beispiel vielleicht besser.)

Viel Erfolg beim Rechnen
Bastiane
:-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]