matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwert von einem Winkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwert von einem Winkel
Extremwert von einem Winkel < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert von einem Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Di 14.01.2014
Autor: ForeverYummy

Aufgabe
[Dateianhang nicht öffentlich]

Ich hab da nochmal eine Frage. Bei dieser Aufgabe verstehe ich leider nicht, wie man auf die Ableitung von der Formel kommt. Irgendwie bringt es mir ja wenig, wenn ich das ausmultipliziere, oder? Könnt ihr mir vielleicht einen Tipp geben?





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Extremwert von einem Winkel: Variable = Winkel alpha
Status: (Antwort) fertig Status 
Datum: 20:32 Di 14.01.2014
Autor: Loddar

Hallo ForeverYummy!


In diesem Falle ist die Variable der Winkel [mm] $\alpha$ [/mm] .
Du musst also nach dieser Variablen ableiten.

Ausmultiplizieren bringt hier wirklich nichts. Der Faktor [mm] $b^2$ [/mm] bleibt beim Ableiten als konstanter Faktor erhalten.


Zudem gilt auch: [mm] $2*\sin(\alpha)*\cos(\alpha) [/mm] \ = \ [mm] \sin(2*\alpha)$ [/mm] .

Damit lässt sich (wenn man mag) Deine Funktion umformen / vereinfachen zu:

[mm] $F(\alpha) [/mm] \ = \ [mm] b^2*\left[\sin(\alpha)+\bruch{1}{2}*\sin(2*\alpha)\right]$ [/mm]


Gruß
Loddar

Bezug
                
Bezug
Extremwert von einem Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 14.01.2014
Autor: ForeverYummy

Danke für die schnelle Antwort.

> Ausmultiplizieren bringt hier wirklich nichts. Der Faktor
> [mm]b^2[/mm] bleibt beim Ableiten als konstanter Faktor erhalten.

Heißt das, dass ich beim Ableiten das [mm] b^2 [/mm] als Zahl sehe und es gar nicht wirklich ableite?
Ich hab jetzt mal versucht, den Term in der Klammer abzuleiten und bekomme folgenedes raus:

[mm] cos(\alpha)+cos(\alpha)*cos(\alpha)+sin(\alpha)-sin(\alpha) [/mm]

Bin ich da schonmal auf dem richtigen Weg :D? Und muss ich das [mm] b^2 [/mm] dann einfach mit dem Term multiplizieren? Und wenn ich das dann getan habe und den Term mit 0 goleich setze, wie kann ich das dann ausrechnen? Hab dann ja quasi nur Variablen in meinem Term.

Danke schonmal im Voraus :)

Bezug
                        
Bezug
Extremwert von einem Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 14.01.2014
Autor: DieAcht

Hallo,


> Danke für die schnelle Antwort.
>  
> > Ausmultiplizieren bringt hier wirklich nichts. Der Faktor
> > [mm]b^2[/mm] bleibt beim Ableiten als konstanter Faktor erhalten.
>  
> Heißt das, dass ich beim Ableiten das [mm]b^2[/mm] als Zahl sehe
> und es gar nicht wirklich ableite?

[ok]

> Ich hab jetzt mal versucht, den Term in der Klammer
> abzuleiten und bekomme folgenedes raus:
>  
> [mm]cos(\alpha)+cos(\alpha)*cos(\alpha)+sin(\alpha)-sin(\alpha)[/mm]

[notok]

Es gilt nach [mm] \alpha [/mm] abgeleitet:

      [mm] (b^2\cdot{}\left[\sin(\alpha)+\bruch{1}{2}\cdot{}\sin(2\cdot{}\alpha)\right])'=b^2\left[\sin(\alpha)+\bruch{1}{2}\cdot{}\sin(2\cdot{}\alpha)\right]'=b^2(cos(\alpha)+\frac{1}{2}*\cos(2\alpha)*2)=b^2(\cos(\alpha)+\cos(2\alpha)) [/mm]

>  
> Bin ich da schonmal auf dem richtigen Weg :D? Und muss ich
> das [mm]b^2[/mm] dann einfach mit dem Term multiplizieren? Und wenn
> ich das dann getan habe und den Term mit 0 goleich setze,
> wie kann ich das dann ausrechnen? Hab dann ja quasi nur
> Variablen in meinem Term.

$b$ ist nur eine Variable!

Es gilt für eine Funktion $f$ und einer Variable $b$ die Faktorregel:

      $(b*f(x))'=b*f'(x)$

Beispiel für $b=3$:

      [mm] $f(x)=3x\Rightarrow [/mm] f'(x)=(3x)'=3*(x)'=3*1=3$

>  
> Danke schonmal im Voraus :)


DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]