matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwert mit Lagrange
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwert mit Lagrange
Extremwert mit Lagrange < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert mit Lagrange: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 27.07.2007
Autor: Vorix

Aufgabe
Ein rechteckiger, oben offener Behälter von [mm] 32m^3 [/mm] Inhalt soll so gebaut werden, dass seine Oberfläche minimal ist. Welche Abmessungen hat er?

Hallo :-),

ich habe mit der Aufgabe deshalb Probleme, weil die Lagrange-Hilfsfunktion zu einem nicht-linearen Gleichungssystem führt.

Soweit bin ich bis jetzt gekommen:

Seien nachfolgend x,y,z die Breite, Länge und Höhe des Behälters.
Oberflächenfunktion
[mm] o(x,y,z)=2*x*z+2*z*y+x*y [/mm]

Nebenbedingung:
[mm] x*y*z=32 \rightarrow n(x,y,z)=x*y*z-32=0 [/mm]

Lagrange Hilfsfunktion:
[mm] F(x,y,z,\lambda)=x*y+2*x*z+2*z*y+\lambda*(x*y*z-32) [/mm]

Partiell ableiten nach x,y,z:
[mm] \frac {\partial F} {\partial x}=y+2*z+\lambda*y*z [/mm]
[mm] \frac {\partial F} {\partial y}=x+2*z+\lambda*x*z [/mm]
[mm] \frac {\partial F} {\partial z}=2*x+2*y+\lambda*x*y [/mm]
[mm] \frac {\partial F} {\partial \lambda}=x*y*z-32 [/mm]

Damit ein Extremwert vorliegt, müssen die Ableitungen =0 sein.
[mm] y+2*z+\lambda*y*z=0 [/mm]
[mm] x+2*z+\lambda*x*z=0 [/mm]
[mm] 2*x+2*y+\lambda*x*y=0 [/mm]
[mm] x*y*z-32=0 [/mm]

Jetzt habe ich versucht, das Ganze aufzulösen, aber ich bekomme es einfach nicht hin. Kann mir jemand vielleicht einen Tipp geben, wie ich das Ganze angehen kann?

Vielen Dank und liebe Grüße,


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwert mit Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Fr 27.07.2007
Autor: Martinius

Hallo Vorix,

nachdem man die Ableitungen gebildet hat, sollte man den Lagrange-Multiplikator rasch aus der Rechnung eliminieren, da er ohne weitere Bedeutung ist, d. h., auflösen nach [mm] \lambda. [/mm]

Du erhältst:

[mm] -\lambda [/mm] = [mm] \bruch{1}{z} [/mm] + [mm] \bruch{2}{y} [/mm] = [mm] \bruch{1}{z}+ \bruch{2}{x} [/mm] = [mm] \bruch{2}{y} [/mm] + [mm] \bruch{2}{x} [/mm]

daraus: x = y = 2z ; dann einsetzen in die letzte Ableitung. Es ergibt sich:

x = y = 4   z = 2

LG, Martinius

Bezug
                
Bezug
Extremwert mit Lagrange: Lösungsvorschlag
Status: (Frage) beantwortet Status 
Datum: 23:18 Fr 27.07.2007
Autor: Vorix

Hui, das ging ja super-schnell :-). Vielen Dank für die Hilfe.

So wie ich das verstehe, muss ich also folgendermaßen vorgehen:

1. Die partiellen Ableitungen, die ein [mm] \lambda [/mm] enthalten, nach [mm] \lambda [/mm] umformen. Man erhält dann die folgenden Ergebnisse:
(1)
[mm] y+2*z+\lambda*y*z=0 \rightarrow \lambda=\frac {-1} {z} - \frac {2} {y} [/mm]
(2)
[mm] x+2*z+\lambda*x*z=0 \rightarrow \lambda=\frac {-1} {z} - \frac {2} {x} [/mm]
(3)
[mm] 2*x+2*y+\lambda*x*y=0 \rightarrow \lambda=\frac {-2} {y} - \frac {2} {x} [/mm]

2. Versuchen, durch Gleichsetzen  (abhängige) Lösungen zu finden
(1)=(2)
[mm] \frac {-1} {z} - \frac {2} {y}=\frac {-1} {z} - \frac {2} {x} y=x [/mm]

Mit y=x:
und (2)=(3)
[mm] \frac{-1} {z} - \frac {2} {x} = \frac {-2} {x} - \frac {2} {x} \rightarrow x=2*z z=\frac {x} {2} [/mm]

3. Ergebnisse in partielle Ableitung nach [mm] \lambda [/mm] einsetzen:
[mm] x*y*z-32=0=x*x*\frac {x} {2}-32 \rightarrow x=y=4 \rightarrow z=2 [/mm]


Das müsste eigentlich soweit stimmen, oder?

Vielen Dank nochmals und liebe Grüße,

Vorix



Bezug
                        
Bezug
Extremwert mit Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Fr 27.07.2007
Autor: Martinius

Hallo,

Stimmt alles so weit.

LG, Martinius

Bezug
        
Bezug
Extremwert mit Lagrange: Tipp
Status: (Antwort) fertig Status 
Datum: 00:54 Sa 28.07.2007
Autor: Analytiker

Hi Vorix,

es wurde von Martinius eigentlich schon alles Relevante gesagt, aber eins möchte ich noch anmerken. Ich weiß nicht ob es dir aufgefallen ist, aber bei dieser Art von Aufgabe mit den Langrange-Multiplikatoren stellt die Ableitung [mm] L_{\lambda} [/mm] immer die Nebenbedingung dar. In diesem Falle: x*y*z-32=0

Somit kannst du immer schnell sehen, ob du bei (komplexeren) Aufgaben die richtige Ableitung von [mm] L_{\lambda} [/mm] gebildet hast.

Liebe Grüße
Analytiker
[lehrer]

PS: Meine Notation ist [mm] L_{\lambda} [/mm] =  [mm] \bruch{\partial F}{\partial \lambda}[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]