matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisExtremwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Extremwert
Extremwert < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert: flaecheninhalt umfang
Status: (Frage) beantwortet Status 
Datum: 16:38 Mi 24.08.2005
Autor: LaLune

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Rechteck A = 300cm²
Gesucht: Länge der Seiten des Rechteckes, die minimalen Umfang haben.

Ansatz:

A = 300 = a x b
U = 2xa + 2xb

30 = a x b
b  = 30/a

folgt:

U = 2xa + 2x(30/a)

aber ungeeignet für Hochpunktbestimmung... f'(x)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Extremwert: Gute Ansätze
Status: (Antwort) fertig Status 
Datum: 16:46 Mi 24.08.2005
Autor: Roadrunner

Hallo LaLune,

[willkommenmr] !!



Das sind doch schon sehr gute Ansätze ...

> A = 300 = a x b
> U = 2xa + 2xb

[ok]

  

> 30 = a x b
> b  = 30/a

[notok] Hier unterschlägst Du jeweils eine Ziffer: $b \ = \ [mm] \bruch{300}{a}$ [/mm]

  

> folgt:
>  
> U = 2xa + 2x(30/a)

Folgefehler: $U(a) \ = \ 2a + [mm] \bruch{600}{a} [/mm] \ = \ 2a + [mm] 600*a^{-1}$ [/mm]


Was stört Dich denn jetzt an dieser Funktion wegen der Extremwertbestimmung?

Hast Du mal die ersten beiden Ableitungen $U'(a)_$ und $U''(a)_$ gebildet?

Wie lauten denn diese?


Ich erhalte letztendlich ein Quadrat, also: $a \ = \ b$ .


Gruß vom
Roadrunner


Bezug
                
Bezug
Extremwert: Problem
Status: (Frage) beantwortet Status 
Datum: 15:55 Do 25.08.2005
Autor: LaLune

1. Ableitung zu U = 2a + 600a(hoch -1)

U`()= -600a+2

kleinster Umfang gesucht

notw. Bedingung

              0 = -600a + 2
-600a + 2 = 0
-600a       = -2
a              = ...zu kleiner betrag...

wo steckt der  fehler?

Bezug
                        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 25.08.2005
Autor: Hexe


> 1. Ableitung zu U = 2a + 600a^ {-1}
>  
> U'()= -600a+2

Und genau da steckt das Problem  versuch doch mal die Ableitung von [mm] a^{-1} [/mm] ganz stur nach der Formel  [mm] (x^n)' =n*x^{n-1} [/mm]  auszurechnen.


Bezug
        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 24.08.2005
Autor: Karl_Pech

Hallo LaLune,


Siehe dir als Ergänzung auch folgende Frage an.



Grüße
Karl





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]